
17

C H A P T E R 2

Working With
Editors

ne of the most fundamental tools required for application develop-
ment on any platform is a text editor; and the Linux operating sys-

tem offers programmers a wide variety to choose from. These editors
offer a wide variety of functionality from simple editing features to syntax
highlighting and reading e-mail.

In this chapter, we will focus on a couple of editors that offer features that
will be of interest to developers, Jed, vim, and Emacs. All of these editors
offer extended features beyond simple text editing.

2.1 What to Look for in an Editor

While editors like pico or even ed may be useful for editing system files or writing quick notes,
programming editors have certain functions that permit the programmer to focus on the act of
creating code and helps to manage the process and keep an eye on syntax.

2.1.1 Extensibility

One useful feature of programming editors is the ability to extend the out-of-the-box func-
tionality with custom programming.

Emacs utilizes a full-featured Lisp language called Elisp to provide users with the ability
to add just about any functionality they might require to the editor. The original Lisp language
was written in the late 1950s as part of MIT’s research into artificial intelligence. Elisp is derived
from the original Lisp and provides surprising flexibility in extending Emacs for those who take
the time to learn it.

O

CH02.fm Page 17 Monday, October 7, 2002 8:09 PM

18 Chapter 2 • Working With Editors

Jed extensibility is based on the s-lang libraries (www.s-lang.org) that were developed by
John E. Davis as a generic macro language that would become the basis for a number of differ-
ent programs. S-lang programs resemble C in syntax and layout.

2.1.2 Understanding Syntax

By understanding the syntax of the programming, the editor can perform a number of
functions that make it easier for the programmer to move through the code, locate bugs more
quickly and perform other common functions.

Such functions include jumping to the beginning of a stanza in the code, highlighting that
stanza, automatic indenting, highlighting syntax, and quickly inserting comments and comment-
ing on entire sections of code.

2.1.3 Tag Support

The ctags and etags utilities that come with Linux are able to build a list of the various
functions, classes, fragments, data blocks and other information within the various files that
make up the application. Not all information is available for all languages. For example, while
only subroutines are supported for the Perl language, support for the C/C++ languages includes:

• macros (names defined/undefined by #define / #undef)
• enumerators (enumerated values)
• function definitions, prototypes, and declarations
• class, enum, struct, and union names
• namespaces
• typedefs
• variables (definitions and declarations)
• class, struct, and union members

Both Emacs and vim provide the ability for the editor to understand standard tag files and
help the programmer quickly locate and edit the portion of code that he/she is working on.
Emacs uses the output from etags, while vi uses ctags.

2.1.4 Folding Code

Folding code refers to the ability of the editor to hide portions of code while they are not
needed. For example, all of the functions or subroutines in the code can be folded so that only
the names of the functions are seen until the programmer unfolds that routine to work on it.

2.2 Emacs

Emacs is a lisp-based editor that has been around in one form or another since the late 1970s;
despite its long history, it remains one of the most up-to-date and widely used editing environ-

CH02.fm Page 18 Monday, October 7, 2002 8:09 PM

Emacs 19

ments today. From within the editor a user can read and send mail, perform research on the Inter-
net, and even send out for coffee to RFC2324 compliant coffee makers.

Configuration of Emacs is accomplished via the .emacs file that can be created in each
user’s $HOME directory. If the configuration does not exist, Emacs will use its built-in
defaults. This file consists of a series of elisp expressions that the editor evaluates when the
application runs.

2.2.1 Using Emacs

Navigating and using Emacs may appear confusing and counter-intuitive for those just learning
how to use the editor, however the time taken to master this editor can prove well-spent when
one considers the time savings that such an integrated and flexible development environment can
provide.

If Emacs is started from within X-Windows, it will automatically open a new window in
the desktop. To prevent this behavior, you can use the –nw option from the command line. Alter-
nately, you can tell Emacs how large to make the window by specifying the size of the window,
in characters, that you wish to create. Examples are:

$ emacs –nw main.c

$ emacs –geometry 80x24 main.c &

Figure 2-1 shows the initial Emacs screen if it is invoked without an initial file name.

Figure 2-1 The initial Emacs screen.

CH02.fm Page 19 Monday, October 7, 2002 8:09 PM

20 Chapter 2 • Working With Editors

For a complete tutorial in using Emacs, from within the application itself, type ^H-t1.
This tutorial covers many of the functions that are available within Emacs and takes you step-by-
step through them.

2.2.2 Basic Emacs Concepts

Emacs uses several keyboard keys to enter commands into the application. The primary
one is the Meta key. The Meta key is signified by M-. The Meta key is generally the ALT key
on the keyboard, although it may be the ESC key in certain circumstances. If the ALT key does
not work, try the ESC key. What works will depend on if you are logged in locally, accessing the
console directly or using X-Windows. The ALT key is used in the same manner as the CTRL key.
When using the ESC key, press and release the ESC key and then press the next indicated key.
In all cases, typing ^U may be used in place of the Meta key. Just type and release ^U and then
type the rest of the key sequence as you would for the ESC key.

Entering text into the buffer is accomplished in the default mode simply by typing on the
keyboard. To abort a command that’s currently running or asking for input, type ^G. This will
return you to the current buffer.

Simple commands can be repeated by prefacing them with the key sequence ESC #. By
pressing the escape key and typing any number, the next command that is issued will be repeated
that number of times. For example, typing ESC 75= is the same as pressing the equal key 75
times.

To exit Emacs, use the command sequence ^X^C.

Moving around
In additional to the basic functionality provided by the arrow keys on the keyboard, the

key combinations shown in Table 2-1 may be used to move the pointer one character at a time in
a given direction.

1. The caret symbol denotes a control character. To enter the key combination ^H-t, press and hold the CTRL key,
and then press the ‘H’ key. Release both keys and then press the ‘t’ key.

Table 2-1 Simple Movement Commands.

Arrow Key Alternate Combination

Left Arrow ^F

Right Arrow ^B

Up Arrow ^P

Down Arrow ^N

CH02.fm Page 20 Monday, October 7, 2002 8:09 PM

Emacs 21

Movement can also be accomplished a word or a page at a time. This is accomplished by
referring to Table 2-2.

Deleting
Just as there are several ways to move around in the buffer, there are several ways to

quickly delete unwanted information. The <BACKSPACE> key or ^H can be used to delete the
character before the pointer. By using ^D you can delete the character at the pointer.

In addition, there are ways to delete words, lines and portions of lines. There are also
methods for blocking text and deleting entire sections of the buffer. For more information on
working with blocks of text, see Cutting and Pasting below.

Table 2-3 shows the various commands used to perform these functions.

Table 2-2 Movement Commands

Action Command

M-b Word Left

M-f Word Right

^A Beginning of Line

^E End of Line

M-c or Page-Up Page Up

^V or Page-Down Page Down

M-< Beginning of Buffer

M-> End of Buffer

Table 2-3 Movement Commands

Action Command

<BACKSPACE> or ^H Delete character to the left

^D Delete character to the right

M-DEL Delete word to the left

M-d Delete from pointer to end of current word

^A^K Delete current line excluding the EOL character

^K Delete from pointer to end of line

^X u Undo previous command – may be used multiple times

CH02.fm Page 21 Monday, October 7, 2002 8:09 PM

22 Chapter 2 • Working With Editors

File Operations
Editing within Emacs is done through a series of buffers. Each buffer may be edited sepa-

rately and the changes saved back to the disk. Files may also be opened into new or existing
buffers as shown in Table 2-4.

Search and Replace
There are two search and replace functions within Emacs. The first one simply does a sim-

ple search (case insensitive by default) for the character string provided by the user. The second,
more complex search function does a search and replace on regular expressions. See Table 2-5
for a list of these commands.

Table 2-4 File Commands

Action Command

^X ^F Open File

^X k Close File

^X i Insert File

^X ^S Save File

^X w Save File As

^X b Change Buffer

Table 2-5 Search and Replace Commands

Action Command

^S ENTER Search

^S Continue Forward Search

^R ENTER Search Backwards

^R Continue Backwards Search

M-% Search & Replace

M-X query-replace-regexp Regular Expression (regex) Search & Replace

M-X occur Find occurrences of a string in the current buffer

CH02.fm Page 22 Monday, October 7, 2002 8:09 PM

Emacs 23

By typing ^S <ENTER> you will be prompted to enter the string to search for. With the
search string still active, typing ^S again to search for the next occurrence of that string in the
current buffer.

Typing M-% (usually accomplished by ESC-% rather than ALT-% under Linux) will bring
up the same search function, but when you press RETURN after entering the search key, you will
be prompted for a replacement string. Type in the string that you wish to replace the search key
with and press RETURN. If the search string is found in the current buffer, you will be presented
with the options shown in Table 2-6.

The more complex search and replace feature is available by default, only from the prompt
and is not bound to a particular key combination. To access this feature, you need to type in the
name of the mode, which in this case is “query-match-regex”. The complete key sequence
for this is:

M-X query-replace-regex <RETURN>

This command brings up a similar series of prompts that allows you to search for regular
expressions in the current buffer and, using the same options shown in Table 2-5, replace them.

Emacs has an auto-completion option that you can use instead of typing the entire com-
mand shown above. By typing:

M-X que<ESC>

Emacs will search through its listing of modes and complete as much of the request as it
can. If there is a conflict and there are one or more modes that begin with the phrase that you

Table 2-6 Search and Replace Options

Action Command

y or SPACE Replace the string at the pointer with the replacement string and search for the next
occurrence.

n or DEL Leave the string at the pointer as is and search for the next occurrence.

! Replace globally from the pointer forward in the buffer.

. Replace the string at the pointer and then exit search and replace mode.

^ Move point back to previous match.

u Undo the previous replacement.

q or ENTER Exit search and replace mode.

? Display help.

CH02.fm Page 23 Monday, October 7, 2002 8:09 PM

24 Chapter 2 • Working With Editors

have typed in, pressing the <SPACEBAR> will cycle through the names. You can press
<RETURN> to select the one currently displayed.

Emacs supports the use of parenthetical statements in regex search and replace commands.
A portion of the search string may be used as part of the replacement string. The contents of the
first set of parenthesis in the search string may be referenced as \1 in the replacement string. The
second set would be referred to by \2.

For example:

Original string:The Dodo and the Griffin
Search string:\([Tt]h\)e \([a-zA-Z]*\)
Replacement string:\1ose \2s
New string:Those Dodos and those Griffins

Cutting and Pasting
Sections of the buffer may be marked and certain commands may be applied to those

regions. These commands include copying, cutting and pasting text. To select a region of text,
move the pointer to the beginning of the sections that you wish to select and press ^<SPACE-
BAR>. When the pointer is moved, the text from the marked point to the current pointer position
will be highlighted. Once the region is selected, issue the cut or copy command. To deselect the
text without issuing the copy or paste command, simply press ^<SPACEBAR> again.

Table 2-7 shows a list of the various selection commands.

2.2.3 Using Buffers and Windows

As mentioned, Emacs has multiple buffers that can be opened and edited simultaneously.
To navigate between buffers, press ^Xb and type the name of the buffer that you wish to switch
to. Buffers may be opened and closed by using the File Commands listed earlier in this chapter.
To see a list of buffers, use ^X^B.

As shown in Figure 2-2, each window may be split into two windows by using the ^X2
command. This will create a horizontal divide in the middle of the current window. The same
file will be present in each pane, but they may be scrolled separately. To move between win-
dows, press ^Xo. Windows may be split multiple times. To close all other buffer, use ^X1. The
current buffer may be closed with ^X0.

Table 2-7 Cut and Paste Commands

Action Command

^<SPACEBAR> Begin selection

^W Cut

M-W Copy

^Y Paste

CH02.fm Page 24 Monday, October 7, 2002 8:09 PM

Emacs 25

See Table 2-8 for a complete list of window commands and Figure 2-2 for an example of
using multiple buffers. These buffers are ‘main.c’ and ‘temp.c’.

Table 2-8 Window Commands

Action Command

^Xb Switch to buffer

^X^B List buffers

^X2 Split current window

^Xo Move to other window

^X0 Delete current window

^X1 Delete all over windows

Figure 2-2 Using multiple buffers in Emacs.

CH02.fm Page 25 Monday, October 7, 2002 8:09 PM

26 Chapter 2 • Working With Editors

2.2.4 Language Modes

Emacs recognizes a number of different programming language files based on their exten-
sions. When you load a recognized source code file, Emacs will assume certain defaults and
enter the appropriate mode for editing that file.

For example, when you load a file with a .c extension for editing, Emacs sets the appropri-
ate mode and enables commands used to automatically and manually indent code, quickly move
though functions and insert comments.

When a language mode is on, Emacs can automatically indent code as you type. To turn
this mode on, type ^C^A. The same command is used to turn this mode back off.

With this mode active, auto-indenting takes place when certain characters are entered from
the keyboard. These characters are the semi-colon, curly braces, and under certain circum-
stances, the comma and colon.

For example, if auto-indent (or technically c-toggle-auto-state) is on and the following
code is typed into the buffer:

void main (int argc, char **argv) { while (

it will be formatted by Emacs as follows:

void main (int argc, char **argv)
 {
 while (

Table 2-9 shows some of the common C-mode commands.

Table 2-9 C-mode Commands

Action Command

ESC ; Insert comment

ESC ^A Go to top of function

ESC ^E Go to bottom of function

ESC ^H Mark function

{ Insert bracket and return

} Return and insert bracket

^C^A Toggle Auto-indent mode

^\ Auto-indent selected region

CH02.fm Page 26 Monday, October 7, 2002 8:09 PM

Emacs 27

2.2.5 Using Tags

As an application grows in size, it also grows in complexity. As the number of subroutines,
variables, functions and files increases, it becomes much more difficult to keep track of every
piece and to quickly find the portion of code that one needs to work on. To address this issue,
Emacs has the ability to read a file that contains a table of tags that reference various parts of an
application.

These tags are stored in a TAGS file that is created by the etags command. Once this file
is built, Emacs can read this table and use it to quickly locate a specific portion of code, regard-
less of whether it is in a currently open file or not.

From the command line the etags command is issued with a list of file names to be read:

$ etags *.[ch]

This command will read all files in the current directory that have a .c or .h extension
and build a tags table file in the current directory. The output file is, by default, called TAGS.

To build a single TAGS table for a project that has source code spread through any number
of subdirectories, the following command may be used:

$ find . –name *.[ch] | xargs etags –

Just be aware if there are too many files, then this command may need to be run several
times with varying arguments in order to build a complete table. To do this, you must use the
–append option to the etags command as shown:

$ find . –name *.c | xargs etags –

$ find . –name *.h | xargs etags –-append –

Any of these commands may be issued from within Emacs itself by using the M-! com-
mand to issue a shell command. Simply type ESC ! <command name> and press return.

Once you have built a TAGS table, it must first be read into Emacs before you can use it to
search. To accomplish this, type M-x visit-tags-table, specify the location of the TAGS
file to be read in, and then the name of the TAGS file. The default value for the location is the
current working directory, and the default tags file name is “TAGS”.

Once the TAGS file has been read in, you may issue search commands against the table.
There are several commands that can be used. The one most commonly used is ESC . which
searches for a tag that matches the search parameter. The default search parameter is the word at
the current pointer position. For example, if the pointer were on the character string
search_function, the default search string that Emacs presents would be
search_function.

If you are not sure of the name of the function that you are looking for, you can type the
first few characters of the function name and press the TAB key. This invokes the completion
function of Emacs and, if the function is unique, it will display that function name. If the func-
tion name is not unique, Emacs will complete as much of the function name as it can and then
prompt you for the rest. Pressing TAB again after Emacs has completed as much of the function

CH02.fm Page 27 Monday, October 7, 2002 8:09 PM

28 Chapter 2 • Working With Editors

name as it can and will display the matching functions in a new buffer. If, for example, you
wanted to edit the close_files function, Figure 2-3 shows the results of typing ESC .
c<TAB><TAB>.

If Emacs finds a function that matches your search string, it will replace the current buffer
with the contents of the first file in which it found the search string and the pointer will be posi-
tioned at the first line of that function. In the above example, completing the file name and press-
ing ENTER results in the file exit.c being opened and the pointer being positioned on the first
line of the close_files function. This is shown in Figure 2-4.

Alternatively, you can initiate the search with the command ESC x find-tag-

other-window and rather than replacing the current buffer with the found function, a new
buffer will be opened instead. Remember that Emacs has a completion function, so after typing
the first few characters of a function, you can press the TAB key and Emacs will fill in the rest
of the command if it is unique. If you are sure that a command is unique, pressing the ENTER
key will execute that command.

Rather than searching for functions by name, you can also search all of the files referenced
in the tags file for a regular expression. To accomplish this, type ESC x tags-search and
Emacs will prompt you for a regular expression to search for. If it finds a match, the first occur-
rence of the string found will be displayed in the current buffer. You can search for the next
occurrence of the string by issuing the ESC , command.

Figure 2-3 Emacs tags-search function.

CH02.fm Page 28 Monday, October 7, 2002 8:09 PM

Emacs 29

Instead of searching for a specific regular expression, the command ESC tags-apro-
pos will create a new buffer entitled *Tags List* that contains a listing of all of the tags that
match that regular expression. By moving the pointer around this buffer, you can place it on the
function that you are looking for and use the ESC . command to open that function in the cur-
rent buffer. A list of TAGS commands is shown in Table 2-10.

Table 2-10 Emacs commands related to TAGS

Action Command

M-x visit-tags-table Load a tags file into Emacs

M- . Search for a function

M-x find-tag-other-window Search for a function and load the file in a new buffer

M-x tags-search Search for a regular expression in the files represented by the current
tag list

M-, Repeat regular expression search

M-x tags-apropos Load a list of all tags into a new buffer

Figure 2-4 Finding the function.

CH02.fm Page 29 Monday, October 7, 2002 8:09 PM

30 Chapter 2 • Working With Editors

2.2.6 Compiling

Emacs has the facility to call external compilers, parse their output and display the results
in a buffer. As the results are displayed, the programmer can then move forward and backward
through any error or warnings. As each error or warning is displayed, the appropriate line in the
code is displayed and may be edited.

To invoke the compiler from Emacs, type M-X compile; in response, Emacs will ask
you for the command to use to compile the program for application. You can either specify
make or the command line compiler with all the options. The default is to invoke make with the
–k option in order to continue as far into the make as it can when encountering errors.

For example, assume that the following (broken) bit of code is in a buffer entitled ‘main.c’.

#include <stdio.h>

int main ()
{
 printf(‘Hello World\n’);
}

The compiler may be invoked by typing:

M-X compile
Compile command: gcc –o main main.c

If the buffer being compiled has not been saved, the editor will prompt you to save it. The
results of the compilation will appear in the *compilation* buffer as seen in Figure 2-5.

Figure 2-5 The results of M-X compile.

CH02.fm Page 30 Monday, October 7, 2002 8:09 PM

Emacs 31

The main.c buffer is still the active buffer, but it is linked to the *compilation* buffer. As
indicated by Figure 2-6, typing ^X-` the first error in the bottom buffer is highlighted and the
pointer in the top buffer is positioned in the line of code that caused the error. Repeating that
command moves the pointer forward in the code to the next error.

While navigating through the *compilation* buffer, typing ^C^C will move the code in
the window to the line referenced by the error message. Table 2-11 lists the commands used to
aid in debugging compiled code.

Table 2-11 Compiling with Emacs

Action Command

M-X compile Compile a file or an entire project

^X-` Find the next error

^C^C Examine source code that created the error

Figure 2-6 Using the built-in functions to debug code.

CH02.fm Page 31 Monday, October 7, 2002 8:09 PM

32 Chapter 2 • Working With Editors

2.2.7 Xemacs

Xemacs is a project that was spawned from the original source tree of the Emacs project.
In many ways it still resembles its ancestor, but when it is run it includes additional features that
make use of the X-Window interface. These include toolbars, font faces, image embedding and
editing, and similar features.

As you can see in Figure 2-7, the Xemacs interface has taken many commonly used func-
tions and created a tool bar across the top of the display that makes them accessible to the
mouse. In addition, most of the user interface is customizable.

2.3 Jed

Jed was designed as a small, lightweight editor. It has many of the functions required by applica-
tion programmers and can be set up with one of several different key bindings to aid people tran-
sitioning from other editors.

The main Jed configuration file is in JEDROOT/lib/jed.rc (/usr/share/jed/lib/jed.rc if the
RedHat RPM was used to install the application). This file contains the default values for all
users, but it is only read if the user does not have a local configuration file present in the home
directory.

Figure 2-7 The Xemacs interface.

CH02.fm Page 32 Monday, October 7, 2002 8:09 PM

Jed 33

2.3.1 Configuring Jed

Individual users may change their default setting by copying JEDROOT/lib/jed.rc to .jedrc
in their home directory:

$ cp /usr/share/jed/lib/jed.rc ~/.jedrc

This file may be edited to change the initial values and behavior of Jed. Lines beginning
with a percent symbol (%) are comments and are ignored when the file is read. Other than condi-
tional statements, all entries must end in a semi-colon (;).

One of the first options that a user may wish to change is the emulation mode of the editor.
By default Jed uses Emacs-like key bindings for entering commands. Some other emulation
modes available are IDE, CUA and even WordStar. To select a new emulation, edit the .jedrc in
the user’s home directory, comment out the current emulation and uncomment the one that you
wish to use.

Below, the user has changed the application to use the IDE mode instead of the default.
These key bindings resemble those used by in Borland’s IDE.

if (BATCH == 0)
{
% () = evalfile("emacs"); % Emacs-like bindings
% () = evalfile("edt"); % EDT emulation
 () = evalfile ("ide"); % Borland IDE
% () = evalfile ("brief"); % Brief Keybindings
% () = evalfile("wordstar"); % Wordstar (use ide instead)
% () = evalfile ("cua"); % CUA-like key bindings
…
}

You will also notice that there is a conditional statement in the example above. This is
because Jed may also be run in batch mode for processing files unattended. Statements within
this block will only be processed if the application is run in interactive mode, not when run in
batch mode. While having the statements outside of this block would not effect the application
when run in batch mode, having them separated speeds up the load time of the application when
they are not needed.

There are many other configuration options available in the .jedrc file that control how the
program operates. Some of them are generic to all modes and others are used in only one mode.
For example, the variable CASE_SEARCH may be set to force case sensitivity in searches, or
C_BRA_NEWLINE may be set to force a newline character to be inserted prior to a curly-bracket
when in C-mode.

Jed also has the capability of calling a compiler directly and examining the output. The
standard compiler is assumed to be gcc. If you are using a different compiler, you will need to
set the Compile_Default_Compiler variable in the .jedrc file.

CH02.fm Page 33 Monday, October 7, 2002 8:09 PM

34 Chapter 2 • Working With Editors

2.3.2 Using Jed

Jed is called from the command line with an argument telling it which file you would like
to edit. If Jed is called without an argument, it will prompt you for the name of the file before
you may do any editing. This behavior may be changed by modifying the
Startup_With_File variable in .jedrc to have a value of 0.

Jed may be called with one or more command line arguments. A –n argument forces Jed
to ignore the users’ local .jedrc file as well as the jedrc file. There is also an X version of Jed
that allows you to use the mouse to select text and options from the menu. To start Jed, simply
type:

$ jed <filename>

or

$ xjed <filename>

Figure 2-8 shows the initial text-based Jed display when no command-line argument is
given. The menu across the top is accessed by pressing the F-10 key. This scratch buffer will dis-
appear when you begin to type and if a filename is given on the command line you will be taken
immediately to that buffer to begin editing.

The basic editing features of Jed will be dependent upon the emulation mode that is
selected. In this section, it is assumed that you will be using the Emacs emulation mode.

Figure 2-8 The Jed text interface.

CH02.fm Page 34 Monday, October 7, 2002 8:09 PM

Jed 35

2.3.3 Folding Code

The ability to fold buffers in order to view only the parts of a file that are necessary at the
time is quite useful when trying to understand program flow and how the application is put
together at a very high level.

In order for folding to be used, special markers must be put in the file at the appropriate
points. There are two markers, one to denote the beginning of a section to be folded and one to
denote the end. In plain text files, these markers must be in the leftmost column; but when an
application language that is recognized by Jed is used, they may be inserted in comments.

The opening marker is three left curly braces “{{{” and the closing is three of the right
“}}}” To insert marker into a C-language program, place the markers directly after the /* that
begins the comment:

/*{{{ Deep magic begins here. */
{
 x = n[i];
 a = ((a<<19)^(a>>13)) + n[(i+128)&255];
 n[i] = y = n[x&255] + a + b;
 r[i] = d = n[(y>>8)&255] + x;
 }
/*}}} */

When the file is folded up, the above section of code will appear as follows:

/*{{{ Deep magic begins here. */...

The ellipsis at the end of the line indicates that this line may be unfolded.
Figure 2-9 shows a section of Perl code with the fold markers in place. The comments are

placed before and after each section of code and a description of the code included in that fold
has been added. Figure 2-10 shows the same file folded.

Figure 2-9 The file with the folding markers in place.

CH02.fm Page 35 Monday, October 7, 2002 8:09 PM

36 Chapter 2 • Working With Editors

The entire program can be folded and unfolded at once, or individual sections of the file
may be unfolded. Several sections from different parts of the program may be unfolded at once.

Jed treats each folded section as a subroutine and it can be edited as such. By moving the
pointer to a folded section and pressing ^C> only that section of the program is displayed for
editing.

In order to use the folding mode, it must be activated from within Jed. In order to do this,
type M-X folding-mode <RETURN>. This will turn the folding mode on and immediately
fold up the current buffer.

See Table 2-12 for a list of the available commands in this mode.

Table 2-12 Folding Mode Commands

Action Command

^C^W Fold current buffer

^C^O Unfold current buffer

^C^X Fold current marked section

^C^S Unfold current marked section

^C^F Fold highlighted section

^C> Edit folded section

^C< Exit current section being edited

Figure 2-10 The same file folded.

CH02.fm Page 36 Monday, October 7, 2002 8:09 PM

VIM 37

2.4 VIM

VIM stands for Vi IMproved and was developed by Bram Moolenaar. It is based on the function-
ality of the original, non-open source vi editor. While most open source software is also free-
ware, VIM is distributed as Charityware. In exchange for using the program, the authors request
that users consider donating to the Kibaale Children’s Center (KCC), a charity providing food,
health care and education for the children in the area. For further information regarding this
donation program and the KCC, within VIM, type :help ifcc or visit http://www.vim.org/
ifcc.

2.4.1 Using VIM

VIM is available in both text-based and graphical modes. The graphical version, shown in Fig-
ure 2-11, has the same functionality as the text-based version, but also provides easy access to
many functions through pull-down menus and a button bar. To start the text-based version, use
the command vim. The graphical version is started by typing gvim. For example, to start VIM
and edit the file main.c, type the following:

$ vim main.c

Or, for the graphical version, type:

$ gvim main.c

Figure 2-11 gvim.

CH02.fm Page 37 Monday, October 7, 2002 8:09 PM

38 Chapter 2 • Working With Editors

2.4.1 VIM Concepts

There are two basic modes within VIM that determine VIM’s behavior. These two modes
are Normal and Insert. In Normal mode, the editor expects the user to enter commands that per-
form a number of functions. In Insert mode, the editor inserts typed characters into the current
document.

The editor starts in Normal mode. To return to that mode from Insert mode, press the
ESC key.

2.4.2 Basic Editing

As previously noted, VIM is based on the vi editor and anyone familiar with vi’s editing
keys will immediately be at home with VIM.

VIM uses two methods of entering commands into the application. Simple commands
such as those used for navigation and entering Insert mode are one- or two-letter commands that
are case sensitive and are not echoed to the screen as they are typed. More complex commands
such as those used to perform searches and utilize the tags created by the ctags program are
entered and echoed into the last line of the application screen. A colon, slash or question mark
character is used to activate the last line mode and enter the command. The character used will
depend upon which command is being issued.

Most simple commands can be preceded by a number. When this occurs, the command
entered is treated as if it had been entered that many times. For example, the command to delete
a line in a buffer is dd. If this command preceded by the number 15, as in 15dd, the next 15
lines in the buffer will be deleted.

To exit VIM, type :q if the text has not been changed, :q! to abandon all changes made
to the file, or :wq! to save all changes and exit.

For help on any function, type:help <name> where <name> is the name of the func-
tion. Typing

:help tutor

will bring up information about VIMs built in tutor file. This file will walk you through the
basics of using VIM.

Navigation
If the terminal that is being used is set up correctly, the arrow keys on the keyboard will

often work for simple navigation commands that move the cursor around the screen. If the termi-
nal type is not properly configured, alternate keys may be used to navigate through the text.

The “h”, “j”, “k”, and “l” keys can be used in place of the left, down, up and right arrow
keys respectively. Additionally, the cursor may be moved one word, sentence or paragraph at a
time by using the keys listed in Table 2-13.

CH02.fm Page 38 Monday, October 7, 2002 8:09 PM

VIM 39

It is also possible to scroll the text on the screen without moving the cursor from its current
position. Table 2-14 lists some of the more common commands.

Insert Mode

There are numerous ways to enter Insert mode depending on where in the buffer you
wish to insert text and how much of the text you wish to change. For example, it is possible to
insert text at the beginning of the current line, at the end of the line, to change only the letter
or word at the cursor, or to change text from the cursor to the end of the line. All of these com-
mands are accomplished by simple one- and two-letter commands. When you press the “i”
key, VIM enters Insert mode and starts inserting the next typed characters at the current cursor
position. If “a” (append) is used to enter Insert mode, the insertion point is the character fol-
lowing the cursor.

Pressing “I” will insert characters at the beginning of the line, and “A” will append char-
acters to the end of the current line. The “o” character opens the line after the current one for
inserting text, and the “O” key creates a new line above the current one and positions the cursor
to enter new text.

Table 2-15 lists these commands.

Table 2-13 Navigating VIM

Action Command

Hjkl Left, down, up, right

W Move one word forward

E Move one word backward

() Move to previous, next sentence

{ } Move to previous, next paragraph

Table 2-14 Folding Mode Commands

Action Command

^F ^B Scroll one screen forward, backward

^U ^D Scroll one half screen up, down

^E ^Y Scroll one line up, down

CH02.fm Page 39 Monday, October 7, 2002 8:09 PM

40 Chapter 2 • Working With Editors

In addition to simply entering text into the buffer, vim can change text already in the docu-
ment. Table 2-16 lists the commands for changing text and their function.

Also of note are the deletion commands. They are entered from Normal mode and may be
used to delete a character, a word or a line at a time. These commands are listed in Table 2-17.

Automatic Indentation
There are several indenting options available with VIM. They are autoindent,

smartindent and cindent. The first, autoindent, simply copies the indentention from
the previous line and uses that as the default for all new lines entered into the buffer. Smartin-
dent and cindent are similar, but cindent is stricter in the way that it handles the format-
ting and may not be suitable for programming languages other than C.

Table 2-15 Entering Insert mode

Action Command

i a Begin inserting characters at the cursor, after the cursor

I A Begin inserting characters at the beginning, end of the line

o O Open a new line after, before the current line

Table 2-16 Commands to change text

Action Command

cw Change from the current cursor position to the end of the word

cc Change the current line

r Replace the letter at the cursor

R Replace from cursor on

Table 2-17 Deletion commands

Action Command

x X Delete the character at, before the cursor

dw Delete from the cursor to the end of the current word

dd Delete the current line

D Delete from cursor to end of the current line

CH02.fm Page 40 Monday, October 7, 2002 8:09 PM

VIM 41

To turn any of these indent modes on, with the application in Normal mode, type :set
<indent mode>. To turn off an indent mode, simply preface the mode name with the word
“no”. For example, to turn on cindent, type:

:set cindent

To turn cindent back off, type:

:set nocindent

2.4.3 Using Tags with VIM

The ctags program can be used to build a tags file that is readable by VIM and can be
used to quickly navigate among multiple source code files. Building the tags file is done in the
same way as described earlier in the chapter for Jed, but you must us the ctags program
instead of etags.

$ ctags *.[ch]

This builds the tags file in the current directory.

To build a tags file for an entire project that spans many subdirectories, from the main
project directory, issue the ctags command with the –R option to recurse the directories.

$ ctags -R

From within VIM, if you need to jump to a particular function that is in the current file,
place the cursor on the appropriate function and press ^]. This command uses the tags file to
locate the function and reads that file into the buffer.

To open a file and locate a function that is not present in the current buffer, type:

:tag <tagname>

where <tagname> is the name of the function that you are looking for. This will load the
file into the buffer and position the cursor at that appropriate tag.

To list the tags that you have jumped to in this editing session, type :tags. The output
from this command is shown below.

:tags

TO tag FROM line in file/text

 1 1 main 1 ./arch/alpha/boot/tools/mkbb.c

 2 1 perror 116 ./arch/alpha/boot/tools/mkbb.c

>

By pressing the number listed in the left column, you can return to previously accessed tags.

In large projects, it would not be uncommon for one function to be referenced in several
places. In the event that multiple tags are created with the same name, you can select from the
list of similar tags by using the :tselect command. To select from a list functions, type
:tselect <tagname>. When the tselect command completes, you will be presented

CH02.fm Page 41 Monday, October 7, 2002 8:09 PM

42 Chapter 2 • Working With Editors

with a list of matching functions from which to choose. When you type in the appropriate num-
ber from the left-hand column, that function will be opened in the buffer.

2.4.4 Folding Code

VIM can use several methods for folding code. The most useful of these for application
programming is the indent method. The variable foldmethod determines how the folding will
take place. To indent set the mode by typing:

:set foldmethod=indent

This command can also be set as a default by entering it in the ~/.vimrc configuration file.
When this option is set and a file is opened, VIM will parse the file looking for initial tab

sequences in order to determine the various indent levels and fold the file automatically. In order
to open or unfold a section, use zo and to close or refold a section, use zc.

The commands zm and zr can also be used to increase and decrease the amount of folding
currently being done to a file. By issuing the zr command, the amount of folding being done is
reduced by one shiftwidth level. That is to say, one level of tabbing is revealed in the code. The
zm command reverses this and folds up one level of indentation every time that it is used.

2.5 References and Resources

1. Learning GNU Emacs, Second Edition, Debra Cameron, Bill Rosenblatt & Eric Ray-
mond, O’Reilly & Associates, Inc., ISBN:1-56592-152-6.

2. GNU Emacs home page, http://www.gnu.org/software/emacs/emacs.html
3. Jed home page, http://space.mit.edu/~davis/jed/
4. GNU Emacs Lisp Reference Manual, http://www.gnu.org/manual/elisp-manual-21-2.8/

html_chapter/elisp.html
5. Coffee.el, a fanciful elisp program to have Emacs make coffee, http://www.chez.com/

emarsden/downloads/coffee.el
6. Xemacs home page. http://www.xemacs.org/
7. VIM Home page. http://www.vim.org

CH02.fm Page 42 Monday, October 7, 2002 8:09 PM

