
101

C H A P T E R 4

Using GNU make

ll serious software projects are built in pieces by many developers.
These pieces consist of source code and header files, libraries and

different tools. To combine these pieces into a product is a process com-
monly known as a build. The GNU make utility is one of the many avail-
able utilities used to build these software projects. Large software projects
often have hundreds and even thousands of files. Compiling these files
and linking them into final executable product files is done by a careful
and well-defined automated process. This automated process, also known
as the software build process, is controlled by the make utility through
makefiles. The make utility reads one or more of these makefiles contain-
ing information about how to build a project. Makefiles contain different
types of information, including variables, control structures and rules to
compile and link source files, build libraries and so on. In the most com-
mon makefiles, rules are present to remove object and executable files
from the source code directory to clean it up, if required. These rules are
enforced based upon time stamps on different files. For example, if an
existing object file is newer than the corresponding source code file, it is
not recompiled. However if the object file is older than the source file, it
shows that someone modified the source file after the object file was last
built. In such a case, make detects it and rebuilds the object file. Depend-
ing upon the requirements of a project, someone can create different types
of rules and commands to build software projects.

A

CH04.fm Page 101 Monday, October 7, 2002 8:54 PM

102 Chapter 4 • Using GNU make

This chapter contains information on how to write makefiles for software
projects and provides sufficient information for a reader to write make-
files for fairly complex projects. You can also refer to the reference at the
end of this chapter for more comprehensive information about the make
utility.

To demonstrate the use of make, several examples are presented in this
chapter. These examples demonstrate how make can be used for different
objectives. These examples are simple and easy to understand and are
explained in the text. However you may write makefiles in many different
ways for the same object. Features of make that are discussed in this
chapter are those most commonly used. Make has many additional, less
commonly used, features that are not covered here and you may want to
use these as well while designing your makefiles.

4.1 Introduction to GNU make
The make utility has been used for a very long time in all types of software development
projects. There are open-source as well as commercial variants available from many vendors.
The most common and popular distribution of make is the GNU make, which is open source
and is available for almost all UNIX and Microsoft Windows platforms. All of the Linux distri-
butions have the GNU make as a standard package with the development system. If you have
installed development software from a distribution, you don’t need to install any additional soft-
ware for make to work. The version of make currently installed can be displayed using the fol-
lowing command.

[root@conformix make]# make -v
GNU Make version 3.79.1, by Richard Stallman and Roland
McGrath.
Built for i386-redhat-linux-gnu
Copyright (C) 1988, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 2000
 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

Report bugs to <bug-make@gnu.org>.

[root@conformix make]#

CH04.fm Page 102 Monday, October 7, 2002 8:54 PM

Introduction to GNU make 103

Since this is one of the most widely used software packages in the development commu-
nity, there is a wealth of information available about it on the Internet. This chapter is intended
to provide sufficient information to use make in all types of software projects.

Simply put, make reads a text input file that contains information about how to compile,
link and build target files. Make uses commands and rules specified in this file to carry out its
operation. We shall discuss in detail the contents of these files, commonly known as makefiles.

4.1.1 Basic Terminology

Before we move ahead with more information about make and how to use it, let us get
familiar with some basic terminology about the software build process and the make utility. The
terms defined below will be used throughout this chapter as well as in the chapters that follow.

Input Files
The make utility uses input files to build software projects. These input files, also known

as makefiles, contain information about when and how to compile, assemble or link files. These
input files also contain commands and rules to carry out these tasks.

Rules
A rule in an input file provides information about how to build an individual target

(defined next). A rule has three parts:

1. The target
2. Dependencies
3. Commands

A target is rebuilt whenever a dependency file has a timestamp that is newer than the target.
A target may have no dependency, in which case it is always rebuilt. The commands in the rule are
executed to build the target from dependencies. The general format of a rule is as follows:

Target: Dependencies
 Commands

The commands part always starts with a TAB character. There are two types of rules that
will be explained later in this chapter. These are types are:

1. The explicit rules
2. The implicit rules

The rules defined above fall into explicit rules category. Implicit rules are predefined rules
that make uses when it does not find an implicit rule to build a target.

CH04.fm Page 103 Monday, October 7, 2002 8:54 PM

104 Chapter 4 • Using GNU make

Target

A target is usually a file or set of files that is the result of some operation on one or more
other files. A target may be an object file, a final executable file or some intermediate file. Tar-
gets may be fake or phony, in which case no files are actually rebuilt. One such example is the
phony target to remove all object and executable files from the source files directory. This pro-
cess is often called a cleaning process. As a convention, all makefiles have a rule to clean the
source code so that everything can be rebuilt freshly.

Dependency

The dependencies are files that determine when to build a target. The decision to rebuild a
target is made if the timestamp on any dependency is newer than the target. This usually shows
that a dependency file has been modified after the target was built the last time. Consider the
example of an object file that was built from a C source file. After building the object file, if
someone modifies the source code file, we need to rebuild the object file because it is no longer
current. When the make utility scans the input files, it verifies this rule and rebuilds the object
file automatically if it finds a change in the source file. If multiple machines are used, they need
to be in time sync.

A target may have multiple dependencies separated by space characters. In case of multi-
ple dependencies, the target is rebuilt if any of the dependencies has changed. If the list of
dependencies is very long, you can write multiple lines for dependencies by using a backslash
character at the end of a line to continue to the next line. For example, the following lines show
that tftp.o has dependencies spanning three lines.

tftp.o: tftp.c tftp.h file1.c file2.c file3.c file4.c\

 file5.c file6.c file7.c file1.h file2.h file3.h\

 file4.h file5.h

Note that the starting character in the second and third line should not be a TAB character;
otherwise make will consider these lines as command lines and will try to execute these.

Default Goal

An input file (makefile) usually contains many rules. Each of these rules has a target.
However the make utility does not build all of these targets. It only tries to build the first target
specified in the input makefile. This target is called the default goal of the makefile. However,
note that if dependencies to this default goal are targets of some other rules, the make utility can
also build those targets in an effort to build the default goal. This happens when dependencies of
the default goal are out of date.

If you want to build a target that is not the default goal, you have to specify the target at the
command line when starting make. This will be explained later in this chapter.

Phony Target

Some targets may have no dependencies. A common example is the clean target that
removes some files from the source directory tree. A typical clean target is shown below:

CH04.fm Page 104 Monday, October 7, 2002 8:54 PM

Introduction to GNU make 105

clean:
 rm *.o

Whenever you invoke make to build this target, the rm command is always executed. This
is because the target has no dependency. These types of targets are called phony targets.

However there is a problem with such targets. Sometimes if there is a file with the same
name as the phony target, the make utility may get confused while building it and execute the
command in the phony target when it is not required to do so. To avoid this problem, you can
specify which targets are phony targets in the makefile. The following line in the makefile
defines clean as a phony target.

.PHONY: clean
clean:
 rm *.o

4.1.2 Input Files

The make command, when invoked without a command line argument, expects certain
file names as input. These files names are searched in the current directory in the following
order.

1. GNUmakefile
2. makefile
3. Makefile

If none of these files is present, make will not take any action and displays the following
error message:

[root@conformix make]# make
make: *** No targets specified and no makefile found. Stop.
[root@conformix make]#

However there is a way to specify files with non-standard names as explained later. The
common practice is to use “Makefile” as the name of the input file because it easy to distinguish
from other files due to upper case M.

N O T E If you have multiple input files in the same directory
with names GNUmakefile, makefile and Makefile,
only the GNUmakefile will be used. As a rule of thumb, make
will use only the first available file in its priority list to build a
project. This means that if we have two files with names make-
file and Makefile, only the file named makefile will be
used.

CH04.fm Page 105 Monday, October 7, 2002 8:54 PM

106 Chapter 4 • Using GNU make

You can specify any other filename using command line switch –f with the make com-
mand. For example, if you have a file named myrules.make, you can use it as input file to the
make utility as follows:

make –f myrules.make

From now on in this book, we shall use only “Makefile” as the name of the input file for
the make command. This is a usual convention in most of the software development projects.
Input files with any other name will be used as include files in the Makefile. The common con-
ventional name for include file is Makefile.in.

4.1.3 Typical Contents of a Makefile

The makefiles that are used as input to the make command have similar types of contents.
Some of the typical contents of a makefile are as follows.

Variables
Variables are usually the first part of any makefile. Variables are used to associate a name

to a text string in the makefiles. These variables are then substituted into other targets, dependen-
cies or commands later in the makefile. A simple equal sign can associate a text string to a name.
The following line defines a variable targets in the makefile. This variable is equal to two target
files tftp.o and fto.o.

targets = tftp.o ftp.o

To use this variable later on, you enclose the variable name in parentheses and use a dollar
sign with it. The targets variable will be used as $(targets) in the makefile to refer to these
two object files. A typical use of this variable is shown in the following three lines.

$(targets): tftp.c tftp.h ftp.c ftp.h
 gcc –c tftp.c
 gcc –c ftp.c

This rule tells make command that if any of the four dependency files (tftp.c,
tftp.h, ftp.c, ftp.h) has a timestamp newer than the object files, the object files
should be rebuilt.

Now you may have noticed that this is not a wise rule. If only tftp.c is changed, then
we need to build only tftp.o but with this rule we are also building ftp.o which may not be
required. However this type of rule may be useful when a single dependency may affect many
targets. For example, both ftp.o and tftp.o may be dependent on common.h file and the
following rule will make sense.

$(targets): common.h
 gcc –c tftp.c
 gcc –c ftp.c

We shall discuss more about these things and how to write wiser and more comprehensive
rules in makefiles later in this chapter.

CH04.fm Page 106 Monday, October 7, 2002 8:54 PM

Introduction to GNU make 107

Rule to Build the Default Goal
After defining the variables, the first rule defines the default goal. This is usually used to

build one or more final executable from all of the source, object and library files.

Rules to Build Other Goals
After defining the default goal, you can define as many other rules as you like. These other

rules are used to build individual parts of a big project. For example, if a project consists of three
main parts, the FTP server, the TFTP server and the DNS resolver, you can have three individual
rules for all of these individual parts. The default goal may be used to build all of these three tar-
gets in a single step.

Rules to Build Individual Objects
In addition to defining rules to build goals, you may have to define rules to build individ-

ual objects or intermediate files. One example of these rules is to build object files from the
source files. These object files may then be used to build executable or library files.

Rules to Install
Some rules may be required to install the files into appropriate directories created by other

rules. For example, after building library files, you may want to install them into /lib or /
usr/lib directory. Similarly, after building executable files, you may want to install them into
/bin, /usr/bin or /sbin directory or any other directory of your choice. For this reason,
one or more rules may be defined in the makefiles so that make copies the appropriate files into
their target location.

Rules to Clean Previous Builds
As mentioned earlier, the rule to clean previous builds is usually a phony rule to clean up

the source code tree from the previously built intermediate and target files. This rule is useful
when you want to hand over a clean directory to someone or to force everything to be rebuilt,
perhaps with new options.

Comments and Blank Lines
As a good convention, you can insert some comment lines in makefiles so that you and

others can make sense of what is there. All comments start with a hash (#) symbol. You can also
put a comment after a command. The rule of thumb is that anything after the hash character will
be considered a comment. If this character is the first character in a line, all of the line is a com-
ment line.

C A U T I O N Any empty line that begins with a TAB is not really
an empty line. It is considered an empty command. Empty com-
mands are sometimes useful when you don’t want to take any
action for a particular dependency.

CH04.fm Page 107 Monday, October 7, 2002 8:54 PM

108 Chapter 4 • Using GNU make

4.1.4 Running make

In its basic and most widely used form, simply entering “make” on the command line
invokes the make program. Upon invocation, it reads its input file, in a priority order as
explained earlier, and executes different commands in it to build the default goal. In this chapter,
we are using a hypothetical project that builds three applications: ftp, tftp and dnsre-
solver. Reference to this project will be used in many parts of the remaining chapter. See sec-
tion 4.4 for a complete listing of the makefiles used.

Building a Default Goal

If we have a Makefile in the current directory and the default goal is to build all of the
ftp, tftp, and dnsresolver, specified by “all” rule, a typical session will be as follows:

[root@rr2 test]# make

gcc -g -O2 -c ftp.c

gcc -g -O2 -c common.c

gcc -static ftp.o common.o -o ftp

gcc -g -O2 -c tftp.c

gcc -static tftp.o common.o -o tftp

gcc -g -O2 -c dnsresolver.c

gcc -static dnsresolver.o common.o -o dnsresolver

[root@rr2 test]#

Building a Non-Default Goal

If you have multiple goals in a Makefile and you don’t want to build a default goal, you
have to specify the goal you want to build on the command line. The following line builds only
the ftp server.

[root@rr2 test]# make ftp

gcc -g -O2 -c ftp.c

gcc -g -O2 -c common.c

gcc -static ftp.o common.o -o ftp

[root@rr2 test]#

When a Target is Updated

There are certain rules about when a target will be built or rebuilt. These are as listed below.

• Target is not present. If a target is not present and a rule is executed, the target will
always be rebuilt.

• Target is outdated. This means that one or more dependencies of a target are newer than
the target. This happens when someone changed a dependency after the target was built
last time.

• Target is forced to be rebuilt. You can define rules to force a target to be rebuilt
whether a dependency has changed or not. This is also true for phony targets.

CH04.fm Page 108 Monday, October 7, 2002 8:54 PM

Introduction to GNU make 109

4.1.5 Shell to Execute Commands

All commands in a makefile are executed in a subshell invoked by the make command. It
is important to know which shell will be used to execute commands in the makefile. By default
the shell name is /bin/sh. However this can be changed using the SHELL variable in the
makefile. Please note that this is not the environment variable SHELL, but is set within the
makefile. This is to avoid conflict with someone’s personal preference of using a particular shell.

Each line that starts with TAB character represents a command and is executed by a single
instance of shell. So, for example, the following line will cause a directory change to tftp and
the command rm *.o to be executed from that directory. After executing this command, the
next command is executed in the original directory because a new subshell is invoked and the
effect of the cd tftp command is gone.

tftp: tftp/Makefile

 cd tftp; rm *.o

 @echo “Rebuilding . . .”

As mentioned earlier, one line can be split into multiple lines by placing a backslash at the
end of the line. The above three lines can be written as follows without any change in their
result:

tftp: tftp/Makefile

 (cd tftp;\

rm *.o)

 @echo “Makefile changed. Rebuilding …”

4.1.6 Include Files

In case of large projects, makefile rules can be split into many files. These smaller files can
then be included into a makefile. When the make utility is scanning through the makefile and it
finds an include file, it will go through the include file before going to the next line in the
makefile. Logically, you can think of contents of the include file being inserted into the
makefile at the place where the file is included.

Files can be included using the include directive inside a makefile. The following line
includes a file myrules.in in a makefile.

include myrules.in

Multiple files can be included into a makefile on the same line. The following line
includes two files myrules.in and bootarules.in into a makefile.

include myrules.in bootarules.in

When multiple files are included, these are read in the order they are present in the make-
file. In the above example, first myrules.in will be read by the make utility and then boot-
arules.in will be read.

CH04.fm Page 109 Monday, October 7, 2002 8:54 PM

110 Chapter 4 • Using GNU make

You can also use wildcards and variables to specify file names with the include directives.
The following include directive includes all files with last part as “.in” and files specified by the
variable MKINCS.

include *.in $(MKINCS)

4.2 The make Rules

Rules are the most important part of a makefile. Rules control how a project should be built.
Each rule has a common structure which is discussed in this section. A typical makefile is intro-
duced as an example to show you how rules are written in makefiles.

4.2.1 Anatomy of a Rule

As mentioned earlier, a typical rule looks like the following:

Target: Dependencies

 Commands

A target is the objective of the rule that depends upon a list of dependencies. Commands
are used to build the target. The target name is followed by a colon. Commands start with a TAB
character.

Multiple Commands in the Same Line

A rule can have multiple commands to build target. These commands can be listed in mul-
tiple lines or in a single line. If commands are listed in a single line, they are separated by a
semicolon. It should be noted that the difference is whether or not they are executed in the same
subshell. Commands listed in one line are executed in the same subshell. If each command is
listed in a separate line, each line starts with a TAB character in the start of the line. The follow-
ing rule, used to remove some files from the current directory, has two commands. The first is
echo and the second is the rm command.

clean:

 @echo "Deleting files ..."

 rm -f $(OBJS) *~

These two commands can also be listed as follows:

clean:

 @echo "Deleting files ..." ; rm -f $(OBJS) *~

C A U T I O N Each line containing commands starts with a TAB
character. The TAB character distinguishes command lines from
other lines. A common error is to replace the TAB character with
a multiple space character. The result is that commands on this
line are not executed.

CH04.fm Page 110 Monday, October 7, 2002 8:54 PM

The make Rules 111

Command Echoing
By default all commands in the makefile are echoed to standard output as these are exe-

cuted. This provides information about the activity of make as it is going through the makefile.
However you can suppress the command echo by starting commands with the character @.

This is especially useful in printing information from within the makefile using the echo
command. For example, you can create a makefile that prints information before it starts execut-
ing. A typical rule in the makefile that displays information about the object before executing
any other command follows. It displays a line showing that make is going to build FTP:

ftp: $(SRCS) $(HDRS)
 @echo "Building FTP"
 @$(CC) $(CFLAGS) $(INCLUDES) ftp.c
 @$(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o ftp

When make reads this file, it displays the following output:

[root@conformix ftp-dir]# make ftp
Building FTP
[root@conformix ftp-dir]#

If you don’t insert the @ characters in this file, the result will be as follows. You can easily
find the difference between this and the earlier output of the make command.

[root@conformix ftp-dir]# make ftp
echo "Building FTP"
Building FTP
gcc -g -O2 -c -I../common-dir ftp.c
gcc -static -L../common-dir ftp.o -lcommon -o ftp
[root@conformix ftp-dir]#

Rules with no Dependencies
Many rules are used with no dependencies. These rules are used to execute commands

without looking into any dependencies. Commands in these rules are guaranteed to be executed.

4.2.2 A Basic Makefile

Let us start with a simple makefile shown below. This makefile is used to build ftp,
which is the default target.

N O T E There are other ways to suppress the command
echo. One of these is the use of –s or –silent flag on the
command line. However the most common method is the use of
the @ character.

CH04.fm Page 111 Monday, October 7, 2002 8:54 PM

112 Chapter 4 • Using GNU make

###
Makefile created to demonstrate use of the make
utility in the "Linux Development Platform" book.
#
Author: Rafeeq Ur Rehman
rr@conformix.net
###

Variable definition
OBJS = ftp.o common.o
HDRS = ftp.h common.h
CFLAGS = -g -O2
TARGETS = ftp
CC = gcc

Default Target

ftp: $(OBJS) $(HDRS)
 $(CC) $(OBJS) -o ftp

ftp.o: ftp.c $(HDRS)
 $(CC) $(CFLAGS) -c ftp.c

common.o: common.c common.h
 $(CC) $(CFLAGS) -c common.c

clean:
 rm -f $(TARGETS) $(OBJS)

This makefile has initial comments that show information about the file. After that, vari-
ables are defined. The rule to build default target is listed next. This rule has two dependencies
which are defined by variables $(OBJS) and $(HDRS). Rules to build the object files are
listed after the default rule. The last rule, clean, is used to remove files created during the
make process so that the directory contains only the initial source code files when you invoked
this rule for the first time. This rule has no dependency, so the rm command is guaranteed to be
executed.

When building the default target ftp, make checks the dependencies. For this it expands
two variables $(OBJS) and $(HDRS). After expansion, make finds out that the target is
dependent upon the following four files.

1. ftp.o
2. ftp.h
3. common.o
4. common.h

CH04.fm Page 112 Monday, October 7, 2002 8:54 PM

The make Rules 113

Now make also finds out that there are other rules to build ftp.o and common.o files.
If these two files are not up-to-date, make rebuilds these object files using corresponding rules.
For example, if common.c file has been changed since make built common.o last time, make
will rebuild it. After checking dependencies, make will build ftp if any of the dependency is
newer than the ftp file or ftp file does not exist.

If you want to remove the target file and the object files, you can use the make clean
command that invokes the clean rule. This rule has no dependency so the rm command will
always execute, removing the ftp and any object files.

4.2.3 Another Example of Makefile

The following Makefile is a little bit bigger and is used to build three targets. These are as
follows:

1. The ftp server
2. The tftp server
3. The dnsresolver

Before going into detail of how it is done, let us look at the Makefile itself. It is listed
below.

###
Makefile created to demonstrate use of the make
utility in the "Linux Development Platform" book.
#
Author: Rafeeq Ur Rehman
rr@conformix.com
###

Variable definition
SRCS = ftp.c tftp.c dnsresolver.c common.c
OBJS = ftp.o tftp.o dnsresolver.o common.o
FTPOBJS = ftp.o common.o
FTPHDRS = ftp.h common.h
TFTPOBJS = tftp.o common.o
TFTPHDRS = tftp.h common.h
DNSRESOLVEROBJS = dnsresolver.o common.o
DNSRESOLVERHDRS = dnsresolver.h common.h
CC = gcc
CFLAGS = -g -O2
LDFLAGS = -static
TARGETS = ftp tftp dnsresolver
INSTALLDIR = /root

Default Target

CH04.fm Page 113 Monday, October 7, 2002 8:54 PM

114 Chapter 4 • Using GNU make

all: $(TARGETS)

Rule to build object files

$(OBJS): $(SRCS)
 $(CC) $(CFLAGS) -c $(@:.o=.c)

Rules to build individual targets

ftp: $(FTPOBJS) $(FTPHDRS)
 $(CC) $(LDFLAGS) $(FTPOBJS) -o ftp

tftp: $(TFTPOBJS) $(TFTPHDRS)
 $(CC) $(LDFLAGS) $(TFTPOBJS) -o tftp

dnsresolver: $(DNSRESOLVEROBJS) $(DNSRESOLVERHDRS)
 $(CC) $(LDFLAGS) $(DNSRESOLVEROBJS) -o dnsresolver

clean:
 rm -f $(TARGETS) $(OBJS)

install:
 cp $(TARGETS) $(INSTALLDIR)
Additional Dependencies

ftp.o: $(FTPHDRS) tftp.o: $(TFTPHDRS)
dnsresolver.o: $(DNSRESOLVERHDRS)

After comments in the start of the makefile, the first part of the file defines variables used
in this file. As you shall see, defining variables is very helpful if you need any modification in
the Makefile or want to add or remove more files later on. After defining variables, the default
target is defined with the name "all" as follows:

all: $(TARGETS)

 This in turn has dependencies on the three targets that we want to make. Please note that
we don't have any command to build this default target. When make reaches the default target, it
tries to meet dependencies to make sure that these are up-to-date. If any of these dependencies is
not up-to-date, make will try to recreate it.

The three dependencies to the default target (ftp, tftp and dnsresolver) have their
own rules to build. For example, the following ftp rule shows that it depends upon two variables
$(FTPOBJS) and $(FTPHDRS).

ftp: $(FTPOBJS) $(FTPHDRS)
 $(CC) $(LDFLAGS) $(FTPOBJS) -o ftp

This means that if any of the files listed in these two variables has changed, the ftp tar-
get will be rebuilt. These files defined in the two variables are as follows:

CH04.fm Page 114 Monday, October 7, 2002 8:54 PM

The make Rules 115

• ftp.o
• common.o
• ftp.h
• common.h

We have another rule to build object files from source files. This rule is as follows:

$(OBJS): $(SRCS)
 $(CC) $(CFLAGS) -c $(@:.o=.c)

It will build any of the .o object file, which is not up-to-date from its corresponding .c
source code file. The @ sign is used to substitute the name of the target by replacing .o with .c
so that if we want to build the target common.o, the @ symbol will replace .o with .c in the
target, making it common.c. This way the compiler gets the correct argument after the -c
switch in the command line. This technique is especially useful if you are dealing with files with
different extensions. For example, if the source code files are C++ files ending with .cpp, the
above rule may be written as follows:

$(OBJS): $(SRCS)
 $(CC) $(CFLAGS) -c $(@:.o=.cpp)

Now the @ will replace .o with .cpp for each file in the target.
The clean rule will delete all of the object and executable files. The install rule will copy

files into the /root directory. Both of these rules have no dependency. This means that the com-
mands in these rules don't depend on anything and will always be executed whenever this rule is
invoked.

The last part of the makefile lists some additional dependencies not covered by earlier rules.
Note that these three rules in the end have no command to execute. You can have as many rules to
build a target as you like, but only one of these rules should contain commands to build it.

Now you can see how the use of variables is useful in this Makefile. If you add or remove
some files or dependencies, you need to modify only the upper part of the makefile where vari-
ables are defined, without worrying about the rest of the makefile. For example, if you add a
new header file to the dependency list of ftp, you just need to modify the variable FTPHDRS.
Similarly to add a new source code file common.c that is being used by ftp, you need to add it
to the following two variables:

1. FTPOBJS
2. OBJS

By modifying these two variables, this will automatically be used by ftp, $(OBJS) and
clean rules.

Now is the time to use this makefile and see how the make program executes different
commands. The output of the make command is shown below that needs some attention to
understand how the make program checks dependencies and builds different targets.

CH04.fm Page 115 Monday, October 7, 2002 8:54 PM

116 Chapter 4 • Using GNU make

[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c
gcc -static ftp.o common.o -o ftp
gcc -g -O2 -c tftp.c
gcc -static tftp.o common.o -o tftp
gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver
[root@rr2 test]#

The default target is "all" which has dependency upon the variable $(TARGETS). This
variable has three words: ftp, tftp and dnsresolver. First make tries to verify that ftp
is up-to-date. For this it finds that ftp file does not exist so it tries to build it using some other
rule. It finds the following rule to build ftp:

ftp: $(FTPOBJS) $(FTPHDRS)
 $(CC) $(LDFLAGS) $(FTPOBJS) -o ftp

Now it tries to find if dependencies of this rule are up-to-date. The object files are not
present, so first it tries to build the object file. To build the object files, it looks for another rule
and finds the following rule to build two object files (ftp.o and common.o) in the depen-
dency list.

$(OBJS): $(SRCS)
 $(CC) $(CFLAGS) -c $(@:.o=.c)

When make executes the command in this rule, you see the following two lines in the out-
put of the make command.

gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c

Now it has all of the dependencies for the ftp target up-to-date and it builds ftp using
the corresponding rule. At this point you see the following line in the output of the make com-
mand:

gcc -static ftp.o common.o -o ftp

By building ftp, make has satisfied one dependency in the default goal. Now it will try to
meet the second dependency, which is tftp. Since the tftp file is not present, it will locate a
rule that can be used to build tftp. In the tftp rule dependencies, the common.o file is
already up-to-date, so it will not recompile it. However since it does not find tftp.o, it will
rebuild tftp.o. At this point you see the following line in the output:

gcc -g -O2 -c tftp.c

Now it has successfully built dependencies for tftp and it will build the tftp target and
display the following line in the output:

gcc -static tftp.o common.o -o tftp

CH04.fm Page 116 Monday, October 7, 2002 8:54 PM

The make Rules 117

The same process is repeated for the dnsresolver and the following two lines are dis-
played:

gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver

After building dnsresolver, nothing is left in the default target rule “all,” so make will
stop at this point.

Now let us see what happens if you modify the ftp.h file and run make again. The out-
put will be as follows:

[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -static ftp.o common.o -o ftp
[root@rr2 test]#

This time make only rebuilt ftp because ftp.h is a dependency only for the target ftp.
However if you modify common.h, it will rebuild ftp, tftp and dnsresolver as follows:

[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -static ftp.o common.o -o ftp
gcc -g -O2 -c tftp.c
gcc -static tftp.o common.o -o tftp
gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver
[root@rr2 test]#

Modifying common.c will cause rebuilding of all object files as well. This result of
make after modification in common.c is as follows:

[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c
gcc -static ftp.o common.o -o ftp
gcc -g -O2 -c tftp.c
gcc -static tftp.o common.o -o tftp
gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver
[root@rr2 test]#

You can also use rules to build individual targets. For example, if you want to build only
ftp, you use the following command line instead:

[root@rr2 test]# make ftp
gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c
gcc -static ftp.o common.o -o ftp
[root@rr2 test]#

CH04.fm Page 117 Monday, October 7, 2002 8:54 PM

118 Chapter 4 • Using GNU make

Now let us clean the files we have created using the following rule.

clean:
 rm -f $(TARGETS) $(OBJS)

The result of running the command make clean will be as follows:

[root@rr2 test]# make clean
rm -f ftp tftp dnsresolver ftp.o tftp.o dnsresolver.o common.o
[root@rr2 test]#

As you can see from the above output, make has replaced variables with values present in
the variables before running the rm command. This is what is done every time make invokes a
command.

4.2.4 Explicit Rules

There are two types of rules: explicit rules and implicit rules. All of the rules that we have
been using in this chapter until now are explicit rules. An explicit rule has three parts: target,
dependencies and commands. Explicit rules are defined in detail and they perform exactly as
they are written. In general, all rules present in a makefile are explicit rules.

4.2.5 Implicit Rules

Implicit rules are used by make to build certain targets by itself. These rules are usually
language-specific and operate depending upon file extension. For example, make can build .o
files from .c files using an implicit rule for C language compilation. Consider the basic make-
file we used earlier in this chapter as shown below:

Variable definition
OBJS = ftp.o common.o
HDRS = ftp.h common.h
CFLAGS = -g -O2
TARGETS = ftp
CC = gcc

Default Target

ftp: $(OBJS) $(HDRS)
 $(CC) $(OBJS) -o ftp

ftp.o: ftp.c $(HDRS)
 $(CC) $(CFLAGS) -c ftp.c

common.o: common.c common.h
 $(CC) $(CFLAGS) -c common.c

clean:
 rm -f $(TARGETS) $(OBJS)

CH04.fm Page 118 Monday, October 7, 2002 8:54 PM

Using Variables 119

You can modify this file so that it uses implicit rules to build object files. The modified file
is shown below:

Variable definition

OBJS = ftp.o common.o

HDRS = ftp.h common.h

CFLAGS = -g -O2

TARGETS = ftp

CC = gcc

Default Target

ftp: $(OBJS) $(HDRS)

 $(CC) $(OBJS) -o ftp

clean:

 rm -f $(TARGETS) $(OBJS)

Note that we have completely taken out two rules that are used to build the object files.
Now when make needs to build these object files, it uses its implicit rule for this purpose. Run-
ning make on this makefile produces the following result.

[root@conformix make]# make

gcc -g -O2 -c -o ftp.o ftp.c

gcc -g -O2 -c -o common.o common.c

gcc ftp.o common.o -o ftp

[root@conformix make]#

Note that the first two lines of the output create object files using implicit rules. You may
also have noted that the CFLAGS variable is also used in this process. Like CFLAGS, implicit
rules use other variables while building targets. For a more detailed discussion, please see the
reference at the end of this chapter.

While using implicit rules, you should be careful about the process, because make can
build a target using explicit rule depending upon which source files are available. For example,
make can produce an object file from a C source code file as well as Pascal source code file. In
the above example, if common.c file is not present but common.p (Pascal source code file) is
present in the current directory, make will invoke Pascal compiler to create common.o file,
which may be wrong. You also have less control over options on implicit rules.

4.3 Using Variables

Variables are an important part of all makefiles used in a project. Variables are used for many
purposes; the most important of which is to have structured and easily understandable makefiles.
This section contains more information about variables used in makefiles.

CH04.fm Page 119 Monday, October 7, 2002 8:54 PM

120 Chapter 4 • Using GNU make

4.3.1 Defining Variables

Variables can be defined in a usual way by typing in the variable name, followed by an
equal sign. The equal sign is followed by the value that is assigned to the variable. Note that
there may be space characters on one or both sides of the equal sign. A typical variable assign-
ment may be as follows:

CFLAGS = -g –O2

Another example of defining the C compiler name is as follows:

CC = gcc

This variable than can be used in other parts of the makefile by placing a $ sign and a pair
of parenthesis or braces. The following line in a makefile is used to compile a file tftp.c and
create an object file tftp.o with the help of above two variables;

$(CC) $(CFLAGS) –o tftp.o tftp.c

This line can also be written as follows:

${CC} ${CFLAGS} –o tftp.o tftp.c

4.3.2 Types of Variables

There are two types of variables. Variables defined using the = sign are recursively
expanded variables. This means that a variable may be expanded depending upon value of a
variable at a later stage in the makefile. Consider the following lines in a makefile.

OBJ1 = ftp.o
OBJ2 = common.o
OBJS = $(OBJ1) $(OBJ2)
printobjs:
 @echo $(OBJS)
OBJ1 = ftp.o tftp.o

Variable OBJS will contain a list of three files, ftp.o, tftp.o and common.o,
although tftp.o was added after the echo command. Output of this makefile is as follows.

[root@conformix make]# make
ftp.o tftp.o common.o
[root@conformix make]#

This is because make used the default target rule and executed the echo command.
Before printing out the value of the OBJS variable, it scanned the makefile to the end to re-eval-
uate the value of the OBJ1 variable and hence the OBJS variable.

The other types of variables are simply expanded variables and the value of these variables
is determined at the time of their definition. These variables are defined using the := symbol

N O T E Variables are case sensitive in makefiles. A variable
$(OUTFILES) is different from a variable $(OutFiles).

CH04.fm Page 120 Monday, October 7, 2002 8:54 PM

Using Variables 121

instead of just the = symbol. If we change the OBJS line in the above makefile to this type of
variable, the value printed by the makefile will be as follows:

[root@conformix make]# make
ftp.o common.o
[root@conformix make]#

Now make did not take into consideration the changed value of the OBJ1 variable later in
the makefile.

There are advantages and disadvantages to both types of variables. You can decide which
type of variable to use in a particular situation.

4.3.3 Pre-Defined Variables

The make utility can also take variables from the shell environment. For example, the
CFLAGS variable can be set through shell startup file (e.g. /etc/profile). If this variable is
not redefined inside the makefile, its value will be taken from the environment.

4.3.4 Automatic Variables

Some variables are pre-defined and are called automatic variables. They are usually very
short in length but play a very important role in the decision-making process. The most com-
monly used automatic variables are listed below.

• The $@ variable contains the value of the target of a rule.
• The $< variable always contains the first dependency of a rule.
• The $? variable contains a list of modified files in the dependency list. If the target is

being built for the first time, it contains a list of all dependencies. Consider the
following makefile.

Variable definition
OBJS = ftp.o common.o
HDRS = ftp.h common.h

CFLAGS = -g -O2
TARGETS = ftp
CC = gcc

Default Target

ftp: $(OBJS) $(HDRS)
 @echo $?
 @echo $@
 @echo $<
 $(CC) $(OBJS) -o ftp

CH04.fm Page 121 Monday, October 7, 2002 8:54 PM

122 Chapter 4 • Using GNU make

Let’s try to build the default target for the first time and see the output of these echo
commands.

[root@conformix make]# make
gcc -g -O2 -c -o ftp.o ftp.c
gcc -g -O2 -c -o common.o common.c
ftp.o common.o ftp.h common.h
ftp
ftp.o
gcc ftp.o common.o -o ftp
[root@conformix make]#

The first two lines in the output use implicit rules to build object files. The third line in the
output is generated by the first echo command and it has a list of all the dependencies. The sec-
ond echo command displays the fourth line in the output, which is just the name of the target, i.e.
ftp. The last echo command prints the first dependency in the fifth line of the output.

Now let us modify the common.c file and run make once again. The output will be as
follows:

[root@conformix make]# make
gcc -g -O2 -c -o common.o common.c
common.o
ftp
ftp.o
gcc ftp.o common.o -o ftp
[root@conformix make]#

This time make used an implicit rule to build common.o. The important thing to note is
the second line in the output, which is displayed by the first echo command in the makefile.
This time it displayed only one file in the dependency list because common.o is the only file
that is changed in the dependencies.

Automatic variables are very useful in control structures and in the decision-making pro-
cess when you carry out an operation based upon the result of some comparison.

4.4 Working with Multiple Makefiles and Directories

Until now we have used simple makefiles to build projects or targets. We used only one makefile
in the project and all of the source files were present in the same directory. In real-life software
development projects, we have multiple directories containing different parts of a software prod-
uct. For example, one directory may contain all library files, another header files and a third one
common files used by different parts. Similarly every part of the software project may have its
own subdirectory.

This section deals with the same source files and targets that we used earlier in this chap-
ter. The project contains three targets to be built. These targets are ftp, tftp and dnsre-
solver. We are using the same set of source files. However to demonstrate the use of multiple
directories and multiple makefiles, we have created each component in a separate directory. This

CH04.fm Page 122 Monday, October 7, 2002 8:54 PM

Working with Multiple Makefiles and Directories 123

may not be the best example for a real-life situation, but it is well suited to demonstrate one of
many possible ways to handle such a situation. The following directory tree shows the arrange-
ment of these files in different directories.

 [root@conformix make]# tree
.
|-- Makefile
|-- common-dir
| |-- Makefile
| |-- common.c
| `-- common.h
|-- dns-dir
| |-- Makefile
| |-- dnsresolver.c
| `-- dnsresolver.h
|-- ftp-dir
| |-- Makefile
| |-- ftp.c
| `-- ftp.h
`-- tftp-dir
 |-- Makefile
 |-- tftp.c
 `-- tftp.h

4 directories, 13 files
[root@conformix make]#

As you can see, you have four directories, each having its own makefile as well as source
files. There is a makefile in the top directory that is used with the make command. This top-
level makefile used makefiles in sub-directories. We can carry out the common tasks of building,
installing and cleaning different targets while sitting in the top directory. Let’s have a look at
makefile in each directory.

4.4.1 Makefile in The Top Directory

Makefile in the top directory is used to build all of the targets using different rules. To
build a particular target, we move to the directory where source files for that target are present
and run make in that directory. This makefile is shown below.

###
Makefile created to demonstrate use of the make
utility in the "Linux Development Platform" book.
#
Author: Rafeeq Ur Rehman
rr@conformix.com
###

Variable definition

CH04.fm Page 123 Monday, October 7, 2002 8:54 PM

124 Chapter 4 • Using GNU make

FTPDIR = ftp-dir
TFTPDIR = tftp-dir
DNSDIR = dns-dir
COMDIR = common-dir

SUBDIRS = $(COMDIR) $(FTPDIR) $(TFTPDIR) $(DNSDIR)

Default Target

all:
 @echo
 @echo "#######################################"
 @echo "### BUILDING ALL TARGETS ###"
 @echo "#######################################"
 @echo
 for i in $(SUBDIRS) ; do \
 (cd $$i ; make) ; \
 done

Rules to build individual targets

libs:
 @cd $(COMDIR) ; make

ftp:
 @cd $(FTPDIR) ; make

tftp:
 @cd $(TFTPDIR) ; make

dnsresolver:
 @cd $(DNSDIR) ; make

clean:
 rm -f *~
 for i in $(SUBDIRS) ; do \
 (cd $$i ; make clean) ; \
 done

install:
 for i in $(SUBDIRS) ; do \
 (cd $$i ; make install); \
 done

CH04.fm Page 124 Monday, October 7, 2002 8:54 PM

Working with Multiple Makefiles and Directories 125

After defining variables, we have a rule for each target. This rule basically has two com-
mands on the same line. The first command, cd, is used to change the directory where source
files for that target are located. In the second command, make uses makefile in that directory to
build that target. Please note that we can also use the $(MAKE) variable for this purpose.

In the clean and install rules, we use the for loop to go into each directory and exe-
cute some commands. The for loop is explained later in this chapter.

4.4.2 Makefile in common-dir Directory

The files in the common-dir directory are used to build a simple library that is used by
other targets at link time. The makefile in this directory is listed below:

Variable definition
SRCS = common.c
OBJS = common.o
HDRS = common.h
LIBCOMMON = libcommon.a
INSTALLDIR = /root

CC = gcc
CFLAGS = -g -O2 -c

Default Target

$(LIBCOMMON): $(SRCS) $(HDRS)
 $(CC) $(CFLAGS) common.c
 ar -cr $(LIBCOMMON) $(OBJS)
 ranlib $(LIBCOMMON)

N O T E Please note that the following lines:

ftp:
 @cd $(FTPDIR) ; make

are not equal to the following three lines:

ftp:
 @cd $(FTPDIR)
make

In the first case, make changes the directory to $(FTPDIR)
and then executes the make command in that directory, which is
the right thing to do. However in the second case, the cd com-
mand is executed and after that the next make command is again
executed in the current directory. The effect of the cd command is
lost when make goes to the next line to execute the next com-
mand. This is because of a new instance of sub-shell. that exe-
cutes commands in each line as discussed earlier in this chapter.

CH04.fm Page 125 Monday, October 7, 2002 8:54 PM

126 Chapter 4 • Using GNU make

install:
 cp $(LIBCOMMON) $(INSTALLDIR)
clean:
 rm -f $(OBJS) $(LIBCOMMON) *~

This makefile builds an archive library file libcommon.a, which is the default target.
Note that this makefile can also be used as a standalone in this directory so that if someone is
working only on the library part of the project, he/she can use this makefile to test only the com-
pilation and library building process. This is useful because each developer can stay in his/her
own directory without building all parts of the project from the main makefile in the top direc-
tory.

4.4.3 Makefile in the ftp-dir Directory

The makefile in the ftp-dir directory builds the ftp target. It compiles and then stati-
cally links the object files using the library we built in common-dir directory. This makefile is
shown below.

Variable definition
SRCS = ftp.c
OBJS = ftp.o
HDRS = ftp.h

CC = gcc
CFLAGS = -g -O2 -c
INCLUDES = -I../common-dir
LDFLAGS = -static -L$(LIBSDIR)
LIBSDIR = ../common-dir
INSTALLDIR = /root

Default Target

ftp: $(SRCS) $(HDRS)
 $(CC) $(CFLAGS) $(INCLUDES) ftp.c
 $(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o ftp

install:
 cp ftp $(INSTALLDIR)

clean:
 @echo "Deleting files ..."
 rm -f ftp $(OBJS) *~

CH04.fm Page 126 Monday, October 7, 2002 8:54 PM

Working with Multiple Makefiles and Directories 127

4.4.4 Makefile in the tftp-dir Directory

The makefile in the tftp-dir directory builds the tftp target. It compiles and then
statically links the object files using the library we built in the common-dir directory. This
makefile is shown below. It also has rules to install the target and clean the directory.

Variable definition
SRCS = tftp.c
OBJS = tftp.o
HDRS = tftp.h

CC = gcc
CFLAGS = -g -O2 -c
INCLUDES = -I../common-dir
LIBSDIR = ../common-dir
LDFLAGS = -static -L$(LIBSDIR)
INSTALLDIR = /root

Default Target

tftp: $(SRCS) $(HDRS)
 $(CC) $(CFLAGS) $(INCLUDES) tftp.c
 $(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o tftp

install:
 cp tftp $(INSTALLDIR)

clean:
 @echo "Deleting files ..."
 rm -f tftp $(OBJS) *~

4.4.5 Makefile in the dns-dir Directory

The makefile in the dns-dir directory builds the dnsresolver target. It compiles and
then statically links the object files using the library we built in the common-dir directory.
This makefile is shown below.

Variable definition
SRCS = dnsresolver.c
OBJS = dnsresolver.o
HDRS = dnsresolver.h

CC = gcc
CFLAGS = -g -O2 -c
INCLUDES = -I../common-dir
LIBSDIR = ../common-dir
LDFLAGS = -static -L$(LIBSDIR)
INSTALLDIR = /root

CH04.fm Page 127 Monday, October 7, 2002 8:54 PM

128 Chapter 4 • Using GNU make

Default Target

dnsresolver: $(SRCS) $(HDRS)
 $(CC) $(CFLAGS) $(INCLUDES) dnsresolver.c
 $(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o dnsresolver

install:
 cp dnsresolver $(INSTALLDIR)

clean:
 @echo "Deleting files ..."
 rm -f dnsresolver $(OBJS) *~

4.4.6 Building Everything

After going through these makefiles, you are ready to build the targets. Go to the top
directory and run the make command from there. It will read the makefile in the top directory
and will try to build all targets. A typical output of this action is as follows:

[root@conformix make]# make

#######################################
BUILDING ALL TARGETS
#######################################

for i in common-dir ftp-dir tftp-dir dns-dir ; do \
 (cd $i ; make) ; \
done
make[1]: Entering directory `/root/make/common-dir'
gcc -g -O2 -c common.c
ar -cr libcommon.a common.o
ranlib libcommon.a
make[1]: Leaving directory `/root/make/common-dir'
make[1]: Entering directory `/root/make/ftp-dir'
gcc -g -O2 -c -I../common-dir ftp.c
gcc -static -L../common-dir ftp.o -lcommon -o ftp
make[1]: Leaving directory `/root/make/ftp-dir'
make[1]: Entering directory `/root/make/tftp-dir'
gcc -g -O2 -c -I../common-dir tftp.c
gcc -static -L../common-dir tftp.o -lcommon -o tftp
make[1]: Leaving directory `/root/make/tftp-dir'
make[1]: Entering directory `/root/make/dns-dir'
gcc -g -O2 -c -I../common-dir dnsresolver.c
gcc -static -L../common-dir dnsresolver.o -lcommon -o
dnsresolver
make[1]: Leaving directory `/root/make/dns-dir'
[root@conformix make]#

CH04.fm Page 128 Monday, October 7, 2002 8:54 PM

Working with Multiple Makefiles and Directories 129

During the process of building all targets, you can see how make enters and leaves each
directory and builds targets in each directory.

4.4.7 Cleaning Everything

The cleaning process is done the same way as we built all targets. Output of this process is
shown below. Again you can see that make enters each directory, runs the make clean com-
mand and then leaves the directory. The clean rule in makefiles present in each subdirectory is
used to remove files.

[root@conformix make]# make clean
rm -f *~
for i in common-dir ftp-dir tftp-dir dns-dir ; do \
 (cd $i ; make clean) ; \
 done
make[1]: Entering directory `/root/make/common-dir'
rm -f common.o libcommon.a *~
make[1]: Leaving directory `/root/make/common-dir'
make[1]: Entering directory `/root/make/ftp-dir'
Deleting files ...
rm -f ftp ftp.o *~
make[1]: Leaving directory `/root/make/ftp-dir'
make[1]: Entering directory `/root/make/tftp-dir'
Deleting files ...
rm -f tftp tftp.o *~
make[1]: Leaving directory `/root/make/tftp-dir'
make[1]: Entering directory `/root/make/dns-dir'
Deleting files ...
rm -f dnsresolver dnsresolver.o *~
make[1]: Leaving directory `/root/make/dns-dir'
[root@conformix make]#

The make clean command finishes its operation after going through all subdirectories.

4.4.8 Making Individual Targets

Instead of using a single big makefile, you can also build individual targets using smaller
makefiles. While building only one target, make will go into only that directory and build that
target. The following output shows the output of the make command when you build only the
ftp target.

[root@conformix make]# make ftp
make[1]: Entering directory `/root/make/ftp-dir'
gcc -g -O2 -c -I../common-dir ftp.c
gcc -static -L../common-dir ftp.o -lcommon -o ftp
make[1]: Leaving directory `/root/make/ftp-dir'
[root@conformix make]#

CH04.fm Page 129 Monday, October 7, 2002 8:54 PM

130 Chapter 4 • Using GNU make

4.5 Special Features of make

In addition to the normal use of the make utility, it has some special features. Two of these fea-
tures are discussed here that may be of interest for a common user of make. These features are
running make commands in parallel and running make in non-stop mode.

Running multiple commands in parallel enhances the efficiency of make. Running make
in non-stop mode is useful for very large projects where you want make to go through every-
thing while running a command without stopping, even in case of errors. You can redirect the
output of make to a log file which can be viewed later to find out what error occurred during the
make processes of the whole project.

4.5.1 Running Commands in Parallel

Usually make runs commands in serial fashion. This means that one command is exe-
cuted and when that command is finished, the next command is executed. You can ask make to
run many commands in parallel. This is especially useful in multi-processor systems to make
execution fast. The only problem with this is that when multiple commands are running in paral-
lel, output from different commands is displayed simultaneously and can get mixed up. To run
multiple commands in parallel, use the –j (jobs) command line switch with make.

If you want to specify a maximum number of concurrent commands, a number with the
–j switch may be specified. For example, -j5 on the command line will force make to
invoke at the maximum five commands simultaneously. It is useful to note that in general the
most efficient builds can be done with -j equal to one or two times the total number of proces-
sors on the system. Also note that make rules are followed such that all dependencies are sat-
isfied before a target is built. This means you won't always have the maximum number of jobs
running simultaneously, depending upon the way makefile is written.

4.5.2 Non-Stop Execution

The make utility executes each command while building a target. After executing the
command, it checks the result of that command. If the command was executed successfully, it
goes to the next command and executes it. However if the command does not execute success-
fully, make exits without executing any further commands. It displays an error message to show
that the target can’t be built.

Sometime, however, it is not important that each command should succeed. As an exam-
ple, look at the following lines in the clean rule.

clean:
 rm ftp
 rm ftp.o common.o

If the ftp file is not there, the rm command will return a failure code. However we still
want to remove other files using the rm command in the next line. If the rule is listed in this way
and the ftp file is not present, the output of the make clean will be as follows:

CH04.fm Page 130 Monday, October 7, 2002 8:54 PM

Control Structures and Directives 131

[root@conformix make]# make clean

rm ftp

rm: cannot remove `ftp': No such file or directory

make: *** [clean] Error 1

[root@conformix make]#

Now you can see that make did not attempt to execute the second rm command. To over-
come this situation, you can use a hyphen at the start of the command whose result code should
not be checked. This way make displays an error message but continues to the next command.
The same rule with hyphen added to the first rm command will be as follows:

clean:

 -rm ftp

 rm ftp.o common.o

Now when you invoke this rule and ftp file is not present, make will do something like
the following:

[root@conformix make]# make clean

rm ftp

rm: cannot remove `ftp': No such file or directory

make: [clean] Error 1 (ignored)

rm ftp.o common.o

[root@conformix make]#

As you can see from the above output, make ignored the error and continued to the next
line to remove object files.

There are other ways to ignore errors during the make process. You can also use the –i
command line switch to ignore errors during the make process. Another method is to use
.IGNORE special built-in rule to ignore errors.

4.6 Control Structures and Directives

Control structures inside makefiles enable you to make some logical decisions depending upon
certain conditions. Make supports four types of decision-making directives as listed below:

1. The ifeq directive

2. The ifneq directive

3. The ifdef directive

4. The ifndef directive

These directives are explained next. In addition to these directives, you can also use the
for control structure to execute a loop a specified number of times. Let us have a look at each
of these.

CH04.fm Page 131 Monday, October 7, 2002 8:54 PM

132 Chapter 4 • Using GNU make

4.6.1 The ifeq Directive

The ifeq directive is used to compare two values and make a decision based upon the
result. The general format of this directive is as follows:

ifeq (value1, value2)

 block if value 1 is equal to value2

else

 block if value 1 is not equal to value2

endif

The else part is optional and may not be present. This structure is useful if you want to
make a decision on the basis of some criteria. For example, based upon the value of type of build
(temporary or final) you want to use different levels of optimization. The following code in a
makefile does that.

ifeq ($(BUILD), final)

 $(CC) -c -O2 ftp.c

else

 $(CC) -c -O1 ftp.c

endif

Please note that there is no TAB character before ifeq, else and endif words.

4.6.2 The ifneq Directive

The ifneq directive is similar to ifeq directive. The only difference is that sense of
equality is reversed. The general syntax is as follows:

ifneq (value1, value2)

 block if value 1 is not equal to value2

else

 block if value 1 is equal to value2

endif

4.6.3 The ifdef Directive

The ifdef directive checks if the value of the variable is empty or not. If the variable is
not empty, the ifdef block is executed, otherwise the else part is executed. The general struc-
ture of the directive is as follows:

ifdef variable

 block if variable is non-empty

else

 block if variable is empty

endif

This directive is useful to verify if a variable is defined or not. The else part is optional.

CH04.fm Page 132 Monday, October 7, 2002 8:54 PM

Getting the Latest Version and Installation 133

4.6.4 The ifndef Directive

The ifndef directive is similar to the ifdef directive. However selection of a block of
commands is reversed as compared to ifdef directive. Its format is as follows:

ifndef variable
 block if variable is empty
else
 block if variable is not empty
endif

4.6.5 The for Control Structure

You have already used the for directive in the example of using make with multiple
directories. This directive is used to perform repeated operation on multiple items. The follow-
ing rule in the makefile is used to go into multiple directories and remove object files in each of
these directories:

SUBDIRS = ftp-dir tftp-dir common-dir
clean:
 for dir in $(SUBDIRS) ; do \
 (cd $$dir ; rm *.o) ; \
done

Each time a new value is assigned to variable dir from the values listed by the SUBDIRS
variable until all of the values are used.

4.7 Getting the Latest Version and Installation

Almost all of the Linux distributions come with make. The Red Hat 7.1 distribution that we
have used for this book already has the latest version of make. However if you want to get the
latest version of GNU make, it is available at the following FTP site.

ftp://ftp.gnu.org/pub/gnu/make/

This FTP site has multiple versions of the make utility. Download the latest version,
which will be a zipped tar file. The latest version at the time of writing this book is 3.79.1 and
the filename is make-3.79.1.tar.gz.

4.7.1 Compilation

After downloading this file, just un-tar it into a directory using the following command:

tar zxvf make-3.79.1.tar.gz

The source files will be extracted into directory make-3.79.1. Change to this directory
and run the configure script. It will create the makefiles appropriate for you. You should
have some previous version of make in order to build the latest version. Use the make com-
mand; the default rule contains information about how to build make. Use the following com-

CH04.fm Page 133 Monday, October 7, 2002 8:54 PM

134 Chapter 4 • Using GNU make

mand to verify that the build process for make was successful. This command will show a long
list of tests and the output is truncated to save space.

[root@conformix make-3.79.1]# ./make check
Making check in i18n
make[1]: Entering directory `/opt/make-3.79.1/i18n'
make[1]: Nothing to be done for `check'.
make[1]: Leaving directory `/opt/make-3.79.1/i18n'
make[1]: Entering directory `/opt/make-3.79.1'
/opt/make-3.79.1/./make check-local
make[2]: Entering directory `/opt/make-3.79.1'
cd tests && perl ./run_make_tests.pl -make ../make
--
 Running tests for GNU make on Linux conformix.net 2.4.2-2
i686
 GNU Make version 3.79.1
--

Clearing work...
Finding tests...

features/comments ok
features/conditionals ok
features/default_names ok
features/double_colon.......................... ok
features/echoing ok
features/errors ok
features/escape ok
features/include ok

If these tests are successful, you have created the latest and greatest make utility. If some
of the tests fail, it is an indication that some of the features are missing from this build of make.

4.7.2 Installation

You can install the newly created make utility using the following command.

make install

The command should be executed in the same directory in which you did the build pro-
cess.

4.8 References and Resources

1. GNU Make, Richard M. Stallman and Ronald McGrath, Free Software Foundation,
ISBN:1-8822114-80-9. It is also available on many websites in Postscript form.

2. GNU make web site at http://www.gnu.org/software/make/make.html
3. GNU make manual at http://www.gnu.org/manual/make/index.html

CH04.fm Page 134 Monday, October 7, 2002 8:54 PM

