
Intrusion Detection Systems
with Snort

Advanced IDS Techniques Using
Snort, Apache, MySQL, PHP, and ACID

B

RUCE

 P

ERENS

’ O

PEN

 S

OURCE

 S

ERIES

◆

Managing Linux Systems with Webmin: System
Administration and Module Development

Jamie Cameron

◆

Implementing CIFS: The Common Internet File System

Christopher R. Hertel

◆

Embedded Software Development with eCos

Anthony J. Massa

◆

The Linux Development Platform: Configuring, Using,
and Maintaining a Complete Programming
Environment

Rafeeq Ur Rehman, Christopher Paul

◆

Intrusion Detection Systems with Snort:
Advanced IDS Techniques with Snort, Apache,
MySQL, PHP, and ACID

Rafeeq Ur Rehman

perens_series.fm Page 1 Thursday, April 10, 2003 1:43 AM

Intrusion Detection Systems
with Snort

Advanced IDS Techniques Using
Snort, Apache, MySQL, PHP, and ACID

Rafeeq Ur Rehman

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

www.phptr.com

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Editorial/production supervision: Mary Sudul
Cover design director: Jerry Votta
Cover design: DesignSource
Manufacturing manager: Maura Zaldivar
Acquisitions editor: Jill Harry
Editorial assistant: Noreen Regina
Marketing manager: Dan DePasquale

© 2003 Pearson Education, Inc.
Publishing as Prentice Hall PTR
Upper Saddle River, New Jersey 07458

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
<http://www.opencontent.org/openpub/>).

Prentice Hall books are widely used by corporations and government agencies for training, marketing,
and resale.
The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact Corporate Sales Department, Phone: 800-382-3419; FAX: 201-236-7141;
E-mail: corpsales@prenhall.com
Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

Other product or company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Printed in the United States of America
1st Printing

ISBN 0-13-140733-3

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education — Japan
Pearson Education Malaysia, Pte. Ltd.

To open source and free software developers

vii

C O N T E N T S

 Chapter 1 Introduction to Intrusion Detection and Snort 1

1.1 What is Intrusion Detection? 5
1.1.1 Some Definitions 6
1.1.2 Where IDS Should be Placed in Network Topology 8
1.1.3 Honey Pots 9
1.1.4 Security Zones and Levels of Trust 10

1.2 IDS Policy 10
1.3 Components of Snort 12

1.3.1 Packet Decoder 13
1.3.2 Preprocessors 13
1.3.3 The Detection Engine 14
1.3.4 Logging and Alerting System 15
1.3.5 Output Modules 15

1.4 Dealing with Switches 16
1.5 TCP Stream Follow Up 18
1.6 Supported Platforms 18
1.7 How to Protect IDS Itself 19

1.7.1 Snort on Stealth Interface 20
1.7.2 Snort with no IP Address Interface 20

1.8 References 21

viii Contents

 Chapter 2 Installing Snort and Getting Started 23

2.1 Snort Installation Scenarios 24
2.1.1 Test Installation 24
2.1.2 Single Sensor Production IDS 24
2.1.3 Single Sensor with Network Management System Integration 25
2.1.4 Single Sensor with Database and Web Interface 25
2.1.5 Multiple Snort Sensors with Centralized Database 26

2.2 Installing Snort 28
2.2.1 Installing Snort from the RPM Package 28
2.2.2 Installing Snort from Source Code 29
2.2.3 Errors While Starting Snort 43
2.2.4 Testing Snort 43
2.2.5 Running Snort on a Non-Default Interface 51
2.2.6 Automatic Startup and Shutdown 52

2.3 Running Snort on Multiple Network Interfaces 54
2.4 Snort Command Line Options 55
2.5 Step-By-Step Procedure to Compile and Install Snort

From Source Code 56
2.6 Location of Snort Files 56
2.7 Snort Modes 58

2.7.1 Network Sniffer Mode 58
2.7.2 Network Intrusion Detection Mode 65

2.8 Snort Alert Modes 66
2.8.1 Fast Mode 67
2.8.2 Full Mode 68
2.8.3 UNIX Socket Mode 68
2.8.4 No Alert Mode 69
2.8.5 Sending Alerts to Syslog 69
2.8.6 Sending Alerts to SNMP 69
2.8.7 Sending Alerts to Windows 70

2.9 Running Snort in Stealth Mode 71
2.10 References 73

 Chapter 3 Working with Snort Rules 75

3.1 TCP/IP Network Layers 76
3.2 The First Bad Rule 77
3.3 CIDR 78
3.4 Structure of a Rule 79

Contents ix

3.5 Rule Headers 81
3.5.1 Rule Actions 81
3.5.2 Protocols 83
3.5.3 Address 84
3.5.4 Port Number 86
3.5.5 Direction 88

3.6 Rule Options 88
3.6.1 The ack Keyword 89
3.6.2 The classtype Keyword 89
3.6.3 The content Keyword 93
3.6.4 The offset Keyword 94
3.6.5 The depth Keyword 95
3.6.6 The content-list Keyword 95
3.6.7 The dsize Keyword 95
3.6.8 The flags Keyword 96
3.6.9 The fragbits Keyword 97

3.6.10 The icmp_id Keyword 98
3.6.11 The icmp_seq Keyword 98
3.6.12 The itype Keyword 98
3.6.13 The icode Keyword 99
3.6.14 The id Keyword 100
3.6.15 The ipopts Keyword 100
3.6.16 The ip_proto Keyword 101
3.6.17 The logto Keyword 102
3.6.18 The msg Keyword 103
3.6.19 The nocase Keyword 103
3.6.20 The priority Keyword 103
3.6.21 The react Keyword 104
3.6.22 The reference Keyword 104
3.6.23 The resp Keyword 105
3.6.24 The rev Keyword 107
3.6.25 The rpc Keyword 107
3.6.26 The sameip Keyword 108
3.6.27 The seq Keyword 108
3.6.28 The flow Keyword 108
3.6.29 The session Keyword 109
3.6.30 The sid Keyword 110
3.6.31 The tag Keyword 110
3.6.32 The tos Keyword 111
3.6.33 The ttl Keyword 111

x Contents

3.6.34 The uricontent Keyword 111
3.7 The Snort Configuration File 112

3.7.1 Using Variables in Rules 112
3.7.2 The config Directives 114
3.7.3 Preprocessor Configuration 116
3.7.4 Output Module Configuration 116
3.7.5 Defining New Action Types 117
3.7.6 Rules Configuration 117
3.7.7 Include Files 117
3.7.8 Sample snort.conf File 118

3.8 Order of Rules Based upon Action 119
3.9 Automatically Updating Snort Rules 120

3.9.1 The Simple Method 120
3.9.2 The Sophisticated and Complex Method 122

3.10 Default Snort Rules and Classes 125
3.10.1 The local.rules File 127

3.11 Sample Default Rules 127
3.11.1 Checking su Attempts from a Telnet Session 127
3.11.2 Checking for Incorrect Login on Telnet Sessions 128

3.12 Writing Good Rules 128
3.13 References 129

 Chapter 4 Plugins, Preprocessors and Output Modules 131

4.1 Preprocessors 132
4.1.1 HTTP Decode 133
4.1.2 Port Scanning 134
4.1.3 The frag2 Module 135
4.1.4 The stream4 Module 136
4.1.5 The spade Module 137
4.1.6 ARP Spoofing 138

4.2 Output Modules 139
4.2.1 The alert_syslog Output Module 140
4.2.1 The alert_full Output Module 143
4.2.1 The alert_fast Output Module 143
4.2.1 The alert_smb Module 143
4.2.1 The log_tcpdump Output Module 144
4.2.1 The XML Output Module 146
4.2.1 Logging to Databases 150
4.2.1 CSV Output Module 151

Contents xi

4.2.1 Unified Logging Output Module 153
4.2.1 SNMP Traps Output Module 154
4.2.1 Log Null Output Module 155

4.3 Using BPF Fileters 155
4.4 References 156

 Chapter 5 Using Snort with MySQL 157

5.1 Making Snort Work with MySQL 160
5.1.1 Step 1: Snort Compilations with MySQL Support 161
5.1.1 Step 2: Install MySQL 161
5.1.1 Step 3: Creating Snort Database in MySQL 161
5.1.1 Step 4: Creating MySQL User and Granting

Permissions to User and Setting Password 163
5.1.1 Step 5: Creating Tables in the Snort Database 164
5.1.1 Step 6: Modify snort.conf Configuration File 170
5.1.1 Step 7: Starting Snort with Database Support 171
5.1.1 Step 8: Logging to Database 172

5.2 Secure Logging to Remote Databases Securely
Using Stunnel 174

5.3 Snort Database Maintenance 175
5.3.1 Archiving the Database 175
5.3.2 Using Sledge Hammer: Drop the Database 176

5.4 References 176

 Chapter 6 Using ACID and SnortSnarf with Snort 177

6.1 What is ACID? 178
6.2 Installation and Configuration 179
6.3 Using ACID 184

6.3.1 ACID Main Page 188
6.3.2 Listing Protocol Data 189
6.3.3 Alert Details 191
6.3.4 Searching 192
6.3.5 Searching whois Databases 197
6.3.6 Generating Graphs 198
6.3.7 Archiving Snort Data 198
6.3.8 ACID Tables 201

6.4 SnortSnarf 202
6.5 Barnyard 207
6.6 References 207

xii Contents

 Chapter 7 Miscellaneous Tools 209

7.1 SnortSam 210
7.2 IDS Policy Manager 212
7.3 Securing the ACID Web Console 217

7.3.1 Using a Private Network 217
7.3.2 Blocking Access to the Web Server on the Firewall 218
7.3.3 Using iptables 218

7.4 Easy IDS 218
7.5 References 219

 Appendix A Introduction to tcpdump 221

 Appendix B Getting Started with MySQL 223

 Appendix C Packet Header Formats 237

 Appendix D Glossary 243

 Appendix E SNML DTD 245

Index 251

C H A P T E R 1
Introduction to
Intrusion Detection
and Snort
ecurity is a big issue for all networks in today’s enterprise environ-
ment. Hackers and intruders have made many successful attempts to

bring down high-profile company networks and web services. Many
methods have been developed to secure the network infrastructure and
communication over the Internet, among them the use of firewalls,
encryption, and virtual private networks. Intrusion detection is a relatively
new addition to such techniques. Intrusion detection methods started
appearing in the last few years. Using intrusion detection methods, you
can collect and use information from known types of attacks and find out
if someone is trying to attack your network or particular hosts. The infor-
mation collected this way can be used to harden your network security, as
well as for legal purposes. Both commercial and open source products are
now available for this purpose. Many vulnerability assessment tools are
also available in the market that can be used to assess different types of
security holes present in your network. A comprehensive security system
consists of multiple tools, including:

• Firewalls that are used to block unwanted incoming as well as outgo-
ing traffic of data. There is a range of firewall products available in
the market both in Open Source and commercial products. Most pop-
ular commercial firewall products are from Checkpoint (http://
www.checkpoint.com), Cisco (http://www.cisco.com) and Netscreen

S

1

2 Chapter 1 • Introduction to Intrusion Detection and Snort
(http://www.netscreen.com). The most popular Open Source firewall
is the Netfilter/Iptables (http://www.netfilter.org)-based firewall.

• Intrusion detection systems (IDS) that are used to find out if someone
has gotten into or is trying to get into your network. The most popular
IDS is Snort, which is available at http://www.snort.org.

• Vulnerability assessment tools that are used to find and plug security
holes present in your network. Information collected from vulnerability
assessment tools is used to set rules on firewalls so that these security
holes are safeguarded from malicious Internet users. There are many
vulnerability assessment tools including Nmap (http://www.nmap.org)
and Nessus (http://www.nessus.org).

These tools can work together and exchange information with each other. Some
products provide complete systems consisting of all of these products bundled together.

Snort is an open source Network Intrusion Detection System (NIDS) which is
available free of cost. NIDS is the type of Intrusion Detection System (IDS) that is used
for scanning data flowing on the network. There are also host-based intrusion detection
systems, which are installed on a particular host and detect attacks targeted to that host
only. Although all intrusion detection methods are still new, Snort is ranked among the
top quality systems available today.

The book starts with an introduction to intrusion detection and related terminology.
You will learn installation and management of Snort as well as other products that work
with Snort. These products include MySQL database (http://www.mysql.org) and Analy-
sis Control for Intrusion Database (ACID) (http://www.cert.org/kb/acid). Snort has the
capability to log data collected (such as alerts and other log messages) to a database.
MySQL is used as the database engine where all of this data is stored. Using Apache
web server (http://www.apache.org) and ACID, you can analyze this data. A combina-
tion of Snort, Apache, MySQL, and ACID makes it possible to log the intrusion detec-
tion data into a database and then view and analyze it later, using a web interface.

This book is organized in such a way that the reader will be able to build a com-
plete intrusion detection system by going through the following chapters in a step-by-
step manner. All steps of installing and integrating different tools are explained in the
book as outlined below.

Chapter 2 provides basic information about how to build and install Snort itself.
Using the basic installation and default rules, you will be able to get a working IDS.
You will be able to create log files that show intrusion activity.

Chapter 3 provides information about Snort rules, different parts of Snort rules
and how to write your own rules according to your environment and needs. This chapter

3

is very important, as writing good rules is the key to building a detection system. The
chapter also explains different rules that are part of Snort distribution.

Chapter 4 is about input and output plug-ins. Plug-ins are parts of the software
that are compiled with Snort and are used to modify input or output of the Snort detec-
tion engine. Input plug-ins prepare captured data packets before the actual detection
process is applied on these packets. Output plug-ins format output to be used for a par-
ticular purpose. For example, an output plug-in can convert the detection data to a Sim-
ple Network Management Protocol (SNMP) trap. Another output plug-in is used to log
Snort output data into databases. This chapter provides a comprehensive overview of
how these plug-ins are configured and used.

Chapter 5 provides information about using MySQL database with Snort. MySQL
plug-in enables Snort to log data into the database to be used in the analysis later on. In
this chapter you will find information about how to create a database in MySQL, con-
figure a database plug-in, and log data to the database.

Chapter 6 describes ACID, how to use it to get data from the database you config-
ured in Chapter 5, and how to display it using Apache web server. ACID is a very
important tool that provides rich data analysis capabilities. You can find frequency of
attacks, classify different attacks, view the source of these attacks and so on. ACID uses
PHP (Pretty Home Page) scripting language, graphic display library (GD library) and
PHPLOT, which is a tool to draw graphs. A combination of all of these results in web
pages that display, analyze and graph data stored in the MySQL database.

Chapter 7 is devoted to information about some other useful tools that can be used
with Snort.

The system that you will build after going through this book is displayed in Figure
1-1 with different components.

As you can see, data is captured and analyzed by Snort. Snort then stores this data
in the MySQL database using the database output plug-in. Apache web server takes help
from ACID, PHP, GD library and PHPLOT package to display this data in a browser
window when a user connects to Apache. A user can then make different types of queries
on the forms displayed in the web pages to analyze, archive, graph and delete data.

In essence, you can build a single computer with Snort, MySQL database,
Apache, PHP, ACID, GD library and PHPLOT. A more realistic picture of the system
that you will be able to build after reading this book is shown in Figure 1-2.

In the enterprise, usually people have multiple Snort sensors behind every router
or firewall. In that case you can use a single centralized database to collect data from all
of the sensors. You can run Apache web server on this centralized database server as
shown in Figure 1-3.

4 Chapter 1 • Introduction to Intrusion Detection and Snort
Figure 1-1 Block diagram of a complete network intrusion detection system
consisting of Snort, MySQL, Apache, ACID, PHP, GD Library and PHPLOT.

Figure 1-2 A network intrusion detection system with web interface.

What is Intrusion Detection? 5
1.1 What is Intrusion Detection?
Intrusion detection is a set of techniques and methods that are used to detect suspi-
cious activity both at the network and host level. Intrusion detection systems fall into
two basic categories: signature-based intrusion detection systems and anomaly detec-
tion systems. Intruders have signatures, like computer viruses, that can be detected
using software. You try to find data packets that contain any known intrusion-related
signatures or anomalies related to Internet protocols. Based upon a set of signatures
and rules, the detection system is able to find and log suspicious activity and generate
alerts. Anomaly-based intrusion detection usually depends on packet anomalies
present in protocol header parts. In some cases these methods produce better results
compared to signature-based IDS. Usually an intrusion detection system captures
data from the network and applies its rules to that data or detects anomalies in it.
Snort is primarily a rule-based IDS, however input plug-ins are present to detect
anomalies in protocol headers.

Figure 1-3 Multiple Snort sensors in the enterprise logging to a centralized database server.

6 Chapter 1 • Introduction to Intrusion Detection and Snort
Snort uses rules stored in text files that can be modified by a text editor. Rules are
grouped in categories. Rules belonging to each category are stored in separate files.
These files are then included in a main configuration file called snort.conf. Snort reads
these rules at the start-up time and builds internal data structures or chains to apply
these rules to captured data. Finding signatures and using them in rules is a tricky job,
since the more rules you use, the more processing power is required to process captured
data in real time. It is important to implement as many signatures as you can using as
few rules as possible. Snort comes with a rich set of pre-defined rules to detect intrusion
activity and you are free to add your own rules at will. You can also remove some of the
built-in rules to avoid false alarms.

1.1.1 Some Definitions

Before we go into details of intrusion detection and Snort, you need to learn some
definitions related to security. These definitions will be used in this book repeatedly in
the coming chapters. A basic understanding of these terms is necessary to digest other
complicated security concepts.

1.1.1.1 IDS
Intrusion Detection System or IDS is software, hardware or combination of both

used to detect intruder activity. Snort is an open source IDS available to the general
public. An IDS may have different capabilities depending upon how complex and
sophisticated the components are. IDS appliances that are a combination of hardware
and software are available from many companies. As mentioned earlier, an IDS may
use signatures, anomaly-based techniques or both.

1.1.1.2 Network IDS or NIDS
NIDS are intrusion detection systems that capture data packets traveling on the

network media (cables, wireless) and match them to a database of signatures. Depend-
ing upon whether a packet is matched with an intruder signature, an alert is generated or
the packet is logged to a file or database. One major use of Snort is as a NIDS.

1.1.1.3 Host IDS or HIDS
Host-based intrusion detection systems or HIDS are installed as agents on a host.

These intrusion detection systems can look into system and application log files to
detect any intruder activity. Some of these systems are reactive, meaning that they
inform you only when something has happened. Some HIDS are proactive; they can
sniff the network traffic coming to a particular host on which the HIDS is installed and
alert you in real time.

What is Intrusion Detection? 7
1.1.1.4 Signatures
Signature is the pattern that you look for inside a data packet. A signature is used

to detect one or multiple types of attacks. For example, the presence of “scripts/iisad-
min” in a packet going to your web server may indicate an intruder activity.

Signatures may be present in different parts of a data packet depending upon the
nature of the attack. For example, you can find signatures in the IP header, transport
layer header (TCP or UDP header) and/or application layer header or payload. You will
learn more about signatures later in this book.

Usually IDS depends upon signatures to find out about intruder activity. Some
vendor-specific IDS need updates from the vendor to add new signatures when a new
type of attack is discovered. In other IDS, like Snort, you can update signatures your-
self.

1.1.1.5 Alerts
Alerts are any sort of user notification of an intruder activity. When an IDS detects

an intruder, it has to inform security administrator about this using alerts. Alerts may be
in the form of pop-up windows, logging to a console, sending e-mail and so on. Alerts
are also stored in log files or databases where they can be viewed later on by security
experts. You will find detailed information about alerts later in this book.

Snort can generate alerts in many forms and are controlled by output plug-ins.
Snort can also send the same alert to multiple destinations. For example, it is possible to
log alerts into a database and generate SNMP traps simultaneously. Some plug-ins can
also modify firewall configuration so that offending hosts are blocked at the firewall or
router level.

1.1.1.6 Logs
The log messages are usually saved in file. By default Snort saves these messages

under /var/log/snort directory. However, the location of log messages can be changed
using the command line switch when starting Snort. Log messages can be saved either
in text or binary format. The binary files can be viewed later on using Snort or tcpdump
program. A new tool called Barnyard is also available now to analyze binary log files
generated by Snort. Logging in binary format is faster because it saves some formatting
overhead. In high-speed Snort implementations, logging in binary mode is necessary.

1.1.1.7 False Alarms
False alarms are alerts generated due to an indication that is not an intruder activ-

ity. For example, misconfigured internal hosts may sometimes broadcast messages that
trigger a rule resulting in generation of a false alert. Some routers, like Linksys home
routers, generate lots of UPnP related alerts. To avoid false alarms, you have to modify

8 Chapter 1 • Introduction to Intrusion Detection and Snort
and tune different default rules. In some cases you may need to disable some of the
rules to avoid false alarms.

1.1.1.8 Sensor
The machine on which an intrusion detection system is running is also called the

sensor in the literature because it is used to “sense” the network. Later in this book if the
word sensor is used, it refers to a computer or other device where Snort is running.

1.1.2 Where IDS Should be Placed in Network Topology

Depending upon your network topology, you may want to position intrusion
detection systems at one or more places. It also depends upon what type of intrusion
activities you want to detect: internal, external or both. For example, if you want to
detect only external intrusion activities, and you have only one router connecting to the
Internet, the best place for an intrusion detection system may be just inside the router or
a firewall. If you have multiple paths to the Internet, you may want to place one IDS
box at every entry point. However if you want to detect internal threats as well, you may
want to place a box in every network segment.

In many cases you don’t need to have intrusion detection activity in all network
segments and you may want to limit it only to sensitive network areas. Note that more
intrusion detection systems mean more work and more maintenance costs. Your deci-
sion really depends upon your security policy, which defines what you really want to
protect from hackers. Figure 1-4 shows typical locations where you can place an intru-
sion detection system.

Figure 1-4 Typical locations for an intrusion detection system.

What is Intrusion Detection? 9
As you can see from Figure 1-4, typically you should place an IDS behind each of
your firewalls and routers. In case your network contains a demilitarized zone (DMZ),
an IDS may be placed in that zone as well. However alert generation policy should not
be as strict in a DMZ compared to private parts of the network.

1.1.3 Honey Pots

Honey pots are systems used to lure hackers by exposing known vulnerabilities
deliberately. Once a hacker finds a honey pot, it is more likely that the hacker will stick
around for some time. During this time you can log hacker activities to find out his/her
actions and techniques. Once you know these techniques, you can use this information
later on to harden security on your actual servers.

There are different ways to build and place honey pots. The honey pot should have
common services running on it. These common services include Telnet server (port 23),
Hyper Text Transfer Protocol (HTTP) server (port 80), File Transfer Protocol (FTP)
server (port 21) and so on. You should place the honey pot somewhere close to your
production server so that the hackers can easily take it for a real server. For example, if
your production servers have Internet Protocol (IP) addresses 192.168.10.21 and
192.168.10.23, you can assign an IP address of 192.168.10.22 to the honey pot. You can
also configure your firewall and/or router to redirect traffic on some ports to a honey pot
where the intruder thinks that he/she is connecting to a real server. You should be care-
ful in creating an alert mechanism so that when your honey pot is compromised, you are
notified immediately. It is a good idea to keep log files on some other machine so that
when the honey pot is compromised, the hacker does not have the ability to delete these
files.

So when should you install a honey pot? The answer depends on different criteria,
including the following:

• You should create a honey pot if your organization has enough resources to
track down hackers. These resources include both hardware and personnel. If
you don’t have these resources, there is no need to install a honey pot. After all,
there is no need to have data if you can’t use it.

• A honey pot is useful only if you want to use the information gathered in some
way.

• You may also use a honey pot if you want to prosecute hackers by gathering
evidence of their activities.

10 Chapter 1 • Introduction to Intrusion Detection and Snort
Ideally a honey pot should look like a real system. You should create some fake
data files, user accounts and so on to ensure a hacker that this is a real system. This will
tempt the hacker to remain on the honey pot for a longer time and you will be able to
record more activity.

To have more information and get a closer look at honey pots, go to the Honey Pot
Project web site http://project.honeynet.org/ where you will find interesting material.
Also go to the Honeyd web site at http://www.citi.umich.edu/u/provos/honeyd/ to find
out information about this open source honey pot. Some other places where you can
find more information are:

• South Florida Honeynet Project at http://www.sfhn.net

• Different HOWTOs at http://www.sfhn.net/whites/howtos.html

1.1.4 Security Zones and Levels of Trust

Some time ago people divided networks into two broad areas, secure area and
unsecure area. Sometimes this division also meant a network is inside a firewall or a
router and outside your router. Now typical networks are divided into many different
areas and each area may have a different level of security policy and level of trust. For
example, a company’s finance department may have a very high security level and may
allow only a few services to operate in that area. No Internet service may be available
from the finance department. However a DMZ or de-militarized zone part of your net-
work may be open to the Internet world and may have a very different level of trust.

Depending upon the level of trust and your security policy, you should also have
different policies and rules for intruder detection in different areas of your network.
Network segments with different security requirements and trust levels are kept physi-
cally separate from each other. You can install one intrusion detection system in each
zone with different types of rules to detect suspicious network activity. As an example,
if your finance department has no web server, any traffic going to port 80 in the finance
department segment may come under scrutiny for intruder activity. The same is not true
in the DMZ zone where you are running a company web server accessible to everyone.

1.2 IDS Policy

Before you install the intrusion detection system on your network, you must have a pol-
icy to detect intruders and take action when you find such activity. A policy must dictate
IDS rules and how they will be applied. The IDS policy should contain the following
components; you can add more depending upon your requirements.

IDS Policy 11
• Who will monitor the IDS? Depending on the IDS, you may have alerting
mechanisms that provide information about intruder activity. These alerting
systems may be in the form of simple text files, or they may be more
complicated, perhaps integrated to centralized network management systems
like HP OpenView or MySQL database. Someone is needed to monitor the
intruder activity and the policy must define the responsible person(s). The
intruder activity may also be monitored in real time using pop-up windows or
web interfaces. In this case operators must have knowledge of alerts and their
meaning in terms of severity levels.

• Who will administer the IDS, rotate logs and so on? As with all systems, you
need to establish routine maintenance of the IDS.

• Who will handle incidents and how? If there is no incident handling, there is no
point in installing an IDS. Depending upon the severity of the incident, you
may need to get some government agencies involved.

• What will be the escalation process (level 1, level 2 and so on)? The escalation
process is basically an incident response strategy. The policy should clearly
describe which incidents should be escalated to higher management.

• Reporting. Reports may be generated showing what happened during the last
day, week or month.

• Signature updates. Hackers are continuously creating new types of attacks.
These attacks are detected by the IDS if it knows about the attack in the form of
signatures. Attack signatures are used in Snort rules to detect attacks. Because
of the continuously changing nature of attacks, you must update signatures and
rules on your IDS. You can update signatures directly from the Snort web site
on a periodic basis or on your own when a new threat is discovered.

• Documentation is required for every project. The IDS policy should describe
what type of documentation will be done when attacks are detected. The
documentation may include a simple log or record of complete intruder
activity. You may also need to build some forms to record data. Reports are also
part of regular documentation.

Based on the IDS policy you will get a clear idea of how many IDS sensors and
other resources are required for your network. With this information, you will be able to
calculate the cost of ownership of IDS more precisely.

12 Chapter 1 • Introduction to Intrusion Detection and Snort
1.3 Components of Snort
Snort is logically divided into multiple components. These components work together
to detect particular attacks and to generate output in a required format from the detec-
tion system. A Snort-based IDS consists of the following major components:

• Packet Decoder
• Preprocessors
• Detection Engine
• Logging and Alerting System
• Output Modules

Figure 1-5 shows how these components are arranged. Any data packet coming
from the Internet enters the packet decoder. On its way towards the output modules, it is
either dropped, logged or an alert is generated.

Figure 1-5 Components of Snort.

Components of Snort 13
A brief introduction to these components is presented in this section. As you go
through the book and create some rules, you will become more familiar with these com-
ponents and how they interact with each other.

1.3.1 Packet Decoder

The packet decoder takes packets from different types of network interfaces and
prepares the packets to be preprocessed or to be sent to the detection engine. The inter-
faces may be Ethernet, SLIP, PPP and so on.

1.3.2 Preprocessors

Preprocessors are components or plug-ins that can be used with Snort to arrange
or modify data packets before the detection engine does some operation to find out if
the packet is being used by an intruder. Some preprocessors also perform detection by
finding anomalies in packet headers and generating alerts. Preprocessors are very
important for any IDS to prepare data packets to be analyzed against rules in the detec-
tion engine. Hackers use different techniques to fool an IDS in different ways. For
example, you may have created a rule to find a signature “scripts/iisadmin” in HTTP
packets. If you are matching this string exactly, you can easily be fooled by a hacker
who makes slight modifications to this string. For example:

• “scripts/./iisadmin”
• “scripts/examples/../iisadmin”
• “scripts\iisadmin”
• “scripts/.\iisadmin”

To complicate the situation, hackers can also insert in the web Uniform Resource
Identifier (URI) hexadecimal characters or Unicode characters which are perfectly legal
as far as the web server is concerned. Note that the web servers usually understand all
of these strings and are able to preprocess them to extract the intended string “scripts/
iisadmin”. However if the IDS is looking for an exact match, it is not able to detect this
attack. A preprocessor can rearrange the string so that it is detectable by the IDS.

Preprocessors are also used for packet defragmentation. When a large data chunk
is transferred to a host, the packet is usually fragmented. For example, default maxi-
mum length of any data packet on an Ethernet network is usually 1500 bytes. This value
is controlled by the Maximum Transfer Unit (MTU) value for the network interface.
This means that if you send data which is more than 1500 bytes, it will be split into mul-
tiple data packets so that each packet fragment is less than or equal to 1500 bytes. The

14 Chapter 1 • Introduction to Intrusion Detection and Snort
receiving systems are capable of reassembling these smaller units again to form the
original data packet. On IDS, before you can apply any rules or try to find a signature,
you have to reassemble the packet. For example, half of the signature may be present in
one segment and the other half in another segment. To detect the signature correctly you
have to combine all packet segments. Hackers use fragmentation to defeat intrusion
detection systems.

The preprocessors are used to safeguard against these attacks. Preprocessors in
Snort can defragment packets, decode HTTP URI, re-assemble TCP streams and so on.
These functions are a very important part of the intrusion detection system.

1.3.3 The Detection Engine

The detection engine is the most important part of Snort. Its responsibility is to
detect if any intrusion activity exists in a packet. The detection engine employs Snort
rules for this purpose. The rules are read into internal data structures or chains where
they are matched against all packets. If a packet matches any rule, appropriate action is
taken; otherwise the packet is dropped. Appropriate actions may be logging the packet
or generating alerts.

The detection engine is the time-critical part of Snort. Depending upon how pow-
erful your machine is and how many rules you have defined, it may take different
amounts of time to respond to different packets. If traffic on your network is too high
when Snort is working in NIDS mode, you may drop some packets and may not get a
true real-time response. The load on the detection engine depends upon the following
factors:

• Number of rules
• Power of the machine on which Snort is running
• Speed of internal bus used in the Snort machine
• Load on the network

When designing a Network Intrusion Detection System, you should keep all of
these factors in mind.

Note that the detection system can dissect a packet and apply rules on different
parts of the packet. These parts may be:

• The IP header of the packet.
• The Transport layer header. This header includes TCP, UDP or other transport

layer headers. It may also work on the ICMP header.

Components of Snort 15
• The application layer level header. Application layer headers include, but are
not limited to, DNS header, FTP header, SNMP header, and SMTP header. You
may have to use some indirect methods for application layer headers, like offset
of data to be looked for.

• Packet payload. This means that you can create a rule that is used by the
detection engine to find a string inside the data that is present inside the packet.

The detection engine works in different ways for different versions of Snort. In all
1.x versions of Snort, the detection engine stops further processing of a packet when a
rule is matched. Depending upon the rule, the detection engine takes appropriate action
by logging the packet or generating an alert. This means that if a packet matches criteria
defined in multiple rules, only the first rule is applied to the packet without looking for
other matches. This is fine except for one problem. A low priority rule generates a low
priority alert, even if a high priority rule meriting a high priority alert is located later in
the rule chain. This problem is rectified in Snort version 2 where all rules are matched
against a packet before generating an alert. After matching all rules, the highest priority
rule is selected to generate the alert.

The detection engine in Snort version 2.0 is completely rewritten so that it is a lot
faster compared to detection in earlier versions of Snort. While Snort 2.0 is still not in
release at the time of writing this book, earlier analysis shows that the new detection
engine may be up to eighteen times faster.

1.3.4 Logging and Alerting System

Depending upon what the detection engine finds inside a packet, the packet may
be used to log the activity or generate an alert. Logs are kept in simple text files, tcp-
dump-style files or some other form. All of the log files are stored under /var/log/
snort folder by default. You can use –l command line options to modify the location
of generating logs and alerts. Many command line options discussed in the next chapter
can modify the type and detail of information that is logged by the logging and alerting
system.

1.3.5 Output Modules

Output modules or plug-ins can do different operations depending on how you
want to save output generated by the logging and alerting system of Snort. Basically
these modules control the type of output generated by the logging and alerting system.
Depending on the configuration, output modules can do things like the following:

16 Chapter 1 • Introduction to Intrusion Detection and Snort
• Simply logging to /var/log/snort/alerts file or some other file
• Sending SNMP traps
• Sending messages to syslog facility
• Logging to a database like MySQL or Oracle. You will learn more about using

MySQL later in this book
• Generating eXtensible Markup Language (XML) output
• Modifying configuration on routers and firewalls.
• Sending Server Message Block (SMB) messages to Microsoft Windows-based

machines

Other tools can also be used to send alerts in other formats such as e-mail mes-
sages or viewing alerts using a web interface. You will learn more about these in later
chapters. Table 1-1 summarizes different components of an IDS.

1.4 Dealing with Switches
Depending upon the type of switches used, you can use Snort on a switch port. Some
switches, like Cisco, allow you to replicate all ports traffic on one port where you can
attach the Snort machine. These ports are usually referred to as spanning ports. The best
place to install Snort is right behind the firewall or router so that all of the Internet traf-
fic is visible to Snort before it enters any switch or hub. As an example, if you have a
firewall with a T1 connection to the Internet and a switch is used on the inside, the typ-
ical connection scheme will be as shown in Figure 1-6.

Table 1-1 Components of an IDS

Name Description

Packet Decoder Prepares packets for processing.

Preprocessors or Input Plugins Used to normalize protocol headers, detect anomalies, packet re-
assembly and TCP stream re-assembly.

Detection Engine Applies rules to packets.

Logging and Alerting System Generates alert and log messages.

Output Modules Process alerts and logs and generate final output.

Dealing with Switches 17
If the switch you are using has a spanning port, you can connect the IDS machine
to the spanning port as shown in Figure 1-7. All network traffic, including internal data
flowing among company servers and the Internet data, will be visible to the IDS.

You can also connect the IDS to a small HUB or a Network TAP right behind the
firewall, i.e., between firewall and the switch. In this case all incoming and outgoing
traffic is visible to the IDS. The scheme is shown in Figure 1-8.

Figure 1-6 A typical connection scheme with one firewall and switched network.

Figure 1-7 IDS connected a spanning port.

18 Chapter 1 • Introduction to Intrusion Detection and Snort
Note that when the IDS is connected as shown in Figure 1-8, data flowing among
the company servers is not visible to the IDS. The IDS can see only that data which is
coming from or going to the Internet. This is useful if you expect attacks from outside
and the internal network is a trusted one.

1.5 TCP Stream Follow Up
A new preprocessor named Stream4 has been added to Snort. This preprocessor is capa-
ble of dealing with thousands of simultaneous streams and its configuration will be dis-
cussed in Chapter 4. It allows TCP stream reassembly and stateful inspection of TCP
packets. This means that you can assemble packets in a particular TCP session to find
anomalies and attacks that use multiple TCP packets. You can also look for packets
coming to and/or originating from a particular server port.

1.6 Supported Platforms
Snort is supported on a number of hardware platforms and operating systems. Currently
Snort is available for the following operating systems:

• Linux
• OpenBSD

Figure 1-8 Connecting an IDS in a switched environment.

How to Protect IDS Itself 19
• FreeBSD
• NetBSD
• Solaris (both Sparc and i386)
• HP-UX
• AIX
• IRIX
• MacOS
• Windows

For a current list of supported platforms, refer to the Snort home page at http://
www.snort.org.

1.7 How to Protect IDS Itself
One major issue is how to protect the system on which your intrusion detection soft-
ware is running. If security of the IDS is compromised, you may start getting false
alarms or no alarms at all. The intruder may disable IDS before actually performing any
attack. There are different ways to protect your system, starting from very general rec-
ommendations to some sophisticated methods. Some of these are mentioned below.

• The first thing that you can do is not to run any service on your IDS sensor
itself. Network servers are the most common method of exploiting a system.

• New threats are discovered and patches are released by vendors. This is almost
a continuous and non-stop process. The platform on which you are running IDS
should be patched with the latest releases from your vendor. For example, if
Snort is running on a Microsoft Windows machine, you should have all the
latest security patches from Microsoft installed.

• Configure the IDS machine so that it does not respond to ping (ICMP Echo-
type) packets.

• If you are running Snort on a Linux machine, use netfilter/iptable to block any
unwanted data. Snort will still be able to see all of the data.

• You should use IDS only for the purpose of intrusion detection. It should not be
used for other activities and user accounts should not be created except those
that are absolutely necessary.

In addition to these common measures, Snort can be used in special cases as well.
Following are two special techniques that can be used with Snort to protect it from
being attacked.

20 Chapter 1 • Introduction to Intrusion Detection and Snort
1.7.1 Snort on Stealth Interface

You can run Snort on a stealth interface which only listens to the incoming traffic
but does not send any data packets out. A special cable is used on the stealth interface.
On the host where Snort is running, you have to short pins 1 and 2. Pins 3 and 6 are con-
nected to same pins on the other side. Please see Snort FAQ at http://www.snort.org/
docs/faq.html for more information on this arrangement.

1.7.2 Snort with no IP Address Interface

You can also use Snort on an interface where no IP address is assigned. For exam-
ple, on a Linux machine, you can bring up interface eth0 using command “ifconfig
eth0 up” without assigning an actual IP address. The advantage is that when the Snort
host doesn’t have an IP address itself, nobody can access it. You can configure an IP
address on eth1 that can be used to access the sensor itself. This is shown in Figure 1-9.

On Microsoft Windows systems, you can use an interface without binding TCP/IP
to the interface, in which case no IP address will be assigned to the interface. Don’t for-
get to disable other protocols and services on the interface as well. In some cases it has
been noted that winpcap (library used on Microsoft Windows machines to capture
packets) does not work well when no IP address is assigned on the interface. In such a
case, you can use the following method.

Figure 1-9 Snort sensor with two interfaces. One of these has no IP address assigned.

References 21
• Enable TCP/IP on the network interface that you want to use in the stealth
mode. Disable everything other than TCP/IP.

• Enable DHCP client.
• Disable DHCP service.

This will cause no address to be assigned to the interface while the interface is still
bound to TCP/IP networking.

1.8 References

1. Intrusion detection FAQ at http://www.sans.org/newlook/resources/IDFAQ/
ID_FAQ.htm

2. Honey Pot Project at http://project.honeynet.org/
3. Snort FAQ at http://www.snort.org/docs/faq.html
4. Honeyd Honey Pot at http://www.citi.umich.edu/u/provos/honeyd/
5. Winpcap at http://winpcap.polito.it/
6. Cisco systems at http://www.cisco.com
7. Checkpoint web site at http://www.checkpoint.com
8. Netscreen at http://www.netscreen.com
9. Netfilter at http://www.netfilter.org

10. Snort at http://www.snort.org
11. The Nmap tool at http://www.nmap.org
12. Nessus at http://www.nessus.org
13. MySQL database at http://www.mysql.org
14. ACID at http://www.cert.org/kb/acid
15. Apache web server at http://www.apache.org

23

C H A P T E R 2

Installing Snort and
Getting Started

Snort installation may consist of only a working Snort daemon or
of a complete Snort system with many other tools. If you install

only Snort, you can capture intrusion data in text or binary files and then
view these files later on with the help of a text editor or some other tool
like Barnyard, which will be explained later in this book. With this simple
installation you can also send alert data to an SNMP manager, like HP
OpenView or OpenNMS, in the form of SNMP traps. Alert data can also
be sent to a Microsoft Windows machine in the form of SMB pop-up win-
dows. However, if you install other tools, you can perform more sophisti-
cated operations on the intrusion data, such as logging Snort data to a
database and analyzing it through a web interface. Using the web inter-
face, you can view all alerts generated by Snort. The analysis tools allow
you to make sense of the captured data instead of spending lots of time
with Snort log files.

Other tools that can be used with Snort are listed below. Each of them has
a specific task. A comprehensive working Snort system utilizes these
tools to provide a web-based user interface with a backend database.

• MySQL is used with Snort to log alert data. Other databases like Ora-
cle can also be used but MySQL is the most popular database with
Snort. In fact, any ODBC-compliant database can be used with Snort.

A

24 Chapter 2 • Installing Snort and Getting Started

• Apache acts as a web server.

• PHP is used as an interface between the web server and MySQL data-
base.

• ACID is a PHP package that is used to view and analyze Snort data
using a web browser.

• GD library is used by ACID to create graphs.

• PHPLOT is used to present data in graphic format on the web pages
used in ACID. GD library must be working correctly to use PHPLOT.

• ADODB is used by ACID to connect to MySQL database.

2.1 Snort Installation Scenarios

Typical Snort installations may vary depending upon the environment where you are
installing it. Some of the typical installation schemes are listed below for your refer-
ence. You can select one of these depending on the type of network you have.

2.1.1 Test Installation

A simple Snort installation consists of a single Snort sensor. Snort logs data to text
files. These log files can then be viewed later on by the Snort administrator. This
arrangement is suitable only for test environments because the cost of data analysis is
very high in the production environment. To install Snort for this purpose, you can get a
pre-compiled version from http://www.snort.org and install it on your system. For
RedHat Linux, you can download the RPM package. For Microsoft Windows systems,
download executables and install on your system.

2.1.2 Single Sensor Production IDS

A production installation of Snort with only one sensor is suitable for small net-
works with only one Internet connection. Putting the sensor behind a router or firewall
will enable you to detect the activity of intruders into the system. However, if you are
really interested in scanning all Internet traffic, you can put the sensor outside the fire-
wall as well.

In this installation, you can either download a precompiled version of Snort from
its web site (http://www.snort.org) or compile it yourself from the source code. You
should compile the source code yourself only if you need some feature which is not
available in the precompiled versions. The compilation process for Snort is discussed in
detail in this chapter.

Snort Installation Scenarios 25

In a production installation, you also need to implement startup and shutdown pro-
cedures so that Snort automatically starts at boot time. If you are installing a precom-
piled version for Linux, the installation procedure with RPM will take care of it. On
Microsoft Windows systems, you can start Snort as a service or put a batch file in the
startup group. Issues related to Microsoft Windows are covered in Chapter 8. The log-
ging is done in text or binary files and tools like SnortSnarf can be used to analyze data.
SnortSnarf is discussed in Chapter 6 in detail.

2.1.3 Single Sensor with Network Management System Integration

In a production system, you can configure Snort to send traps to a network man-
agement system. There are a variety of network management systems used in the enter-
prise. The most popular commercial systems are from Hewlett-Packard, IBM and
Computer Associates.

Snort integration into these network management systems is done through the use
of SNMP traps. When you go through the compilation process of Snort later in this chap-
ter, you will learn how to build SNMP capability into Snort. Chapter 4 provides more
information about configuring SNMP trap destinations, community names and so on.

2.1.4 Single Sensor with Database and Web Interface

The most common use of Snort should be with integration to a database. The data-
base is used to log Snort data where it can be viewed and analyzed later on, using a
web-based interface. A typical setup of this type consists of three basic components:

1. Snort sensor
2. A database server
3. A web server

Snort logs data into the database. You can view the data using a web browser con-
nected to the sensor. This scheme is shown in Figure 1-1 in Chapter 1. All three compo-
nents can be present on the same system as shown in Figure 1-2 in Chapter 1.

Different types of database servers like MySQL, PostgresSQL, Oracle, Microsoft
SQL server and other ODBC-compliant databases can be used with Snort. PHP is used
to get data from the database and to generate web pages.

This setup provides a very good and comprehensive IDS which is easy to manage
and user friendly. You have to provide a user name, password, database name and data-
base server address to Snort to enable it to log to the database. In a single-sensor
scheme where the database is running on the sensor itself, you can use “localhost” as

26 Chapter 2 • Installing Snort and Getting Started

the host name. You have to build database logging capability into Snort at the compile
time, which will be described later in this chapter. Configuring Snort to use the database
is discussed in Chapter 4, 5 and 6.

2.1.5 Multiple Snort Sensors with Centralized Database

In a corporate environment, you probably have multiple locations where you
would like to install Snort sensors. Managing all of these sensors and analyzing all data
collected by these sensors separately is a very difficult job. There are multiple ways to
setup and install Snort in the enterprise as a distributed IDS.

One method is shown in Figure 1-3 in Chapter 1 where multiple sensors connect
to the same centralized database. All data generated by these sensors is stored in the
database. You run a web server like Apache (http://www.apache.org). A user then uses a
web browser to view this data and analyze it.

However there are some practical problems with this setup.

• All of the sensors must have access to the database at the time you start Snort.
If Snort is not able to connect to the database at the start time, it dies.

• The database must be available all of the time to all sensors. If any of the
network links are down, data is lost.

• You have to open up additional ports for database logging in firewalls if a
firewall lies between the database server and any of the sensors. Sometime this
is not feasible or against security policy.

You can come up with some alternate mechanisms where Snort sensors do not
have a direct connection to the database server. The sensors may be configured to log to
local files. These files can then be uploaded to a centralized server on a periodic basis
using utilities like SCP. The SCP utility is a secure file transfer program that uses
Secure Shell (SSH) protocol. Firewall administrators usually allow SSH port (port 22)
to pass through. You can run certain utilities like Snort itself,1 Barnyard or some other
tool to extract data from these log files and put it into the database server. You can use
the usual web interface to view this data later on. The only problem with this approach
is that the data in the database is not strictly “real-time”. There is a certain delay which
depends upon frequency of uploading data using SCP to the centralized database server.
This arrangement is shown in Figure 2-1.

Note that this centralized server must be running SSH server so that SCP utility is
able to upload files to this server.

1. Snort can be run to get information from its own log files using a command line parameter.

Snort Installation Scenarios 27

As mentioned in Chapter 1, the ultimate objective of this book is to help you
install Snort and to make all of these packages work with each other. When you go
through this book, you will see how these components act with each other to build a
complete working intrusion detection system. The website for this book http://
authors.phptr.com/rehman/ contains all of these packages in the source code form. You
will also find scripts on the site that are very helpful in installing these packages on a
new system with no hassle. In fact, by using the scripts on the site as discussed in this
book, you should be able to have a working IDS by just using a few commands as the
root user. If you use a version newer than that discussed in this book, the latest versions
of the scripts that support new Snort versions can be downloaded from http://
www.argusnetsec.com/downloads.

This books details the installation of these components on a RedHat Linux version
7.3 machine. But the process is similar on other platforms and other versions of RedHat
Linux. All components are installed under /opt directory for the purpose of this book.
However, when a pre-compiled package is used, the location of files may be different.
When you use the scripts in the book or from the website, files will be installed under

Figure 2-1 Distributed Snort installation with the help of tools like SCP and Barnyard.

28 Chapter 2 • Installing Snort and Getting Started

this directory. In this chapter, you will learn how to install Snort as a standalone prod-
uct. Later chapters will focus on other components.

Snort is available in both source code and binary forms. Pre-compiled binary
packages are fine for most installations. As mentioned earlier, if you want to add or
remove certain features of Snort, you need to download the source code version and
then compile it yourself. For example, someone may be interested in SMB alerts while
another may consider it unsecure. If you want to build Snort without support for SMB
alerts, you may want to build it yourself. The same is true of other features like SNMP
traps, MySQL and so on. Another reason to compile the source code yourself may be
when a new version is released but binaries are not yet available. You may also need to
compile the Snort package if you take a snapshot of the code under development. This
chapter will provide a step-by-step guide to installing Snort.

The basic installation procedure is simple because you have plenty of predefined
rules available with Snort that cover most of the known intrusion signatures. However,
customization of your installation may require a lot of work.

Version 1.9.0 is used in this chapter, but the installation procedure is similar for
other versions of the software. After installation, basic information for getting started
with Snort is also provided, including basic Snort concepts, logging and alerting and
some information about Snort modes of operation.

2.2 Installing Snort

In this section you will learn how to install precompiled version of Snort as well as how
to compile and install it by yourself. Installation of the pre-compiled RPM package is
very easy and requires only a few steps. However if you get Snort in source code for-
mat, the installation process may take some time and understanding.

2.2.1 Installing Snort from the RPM Package

The installation procedure of Snort from the RPM package involves the following
steps.

2.2.1.1 Download
Download the latest version from Snort web site (http://www.snort.org). At the

time of writing this book, the latest binary file is snort-1.9.0-1snort.i386.rpm.

2.2.1.2 Install
Run the following command to install Snort binaries:

rpm --install snort-1.9.0-1snort.i386.rpm

Installing Snort 29

This command will perform the following actions:

• Create a directory /etc/snort where all Snort rule files and configuration files
are stored.

• Create a directory /var/log/snort where Snort log files will be stored.
• Create a directory /usr/share/doc/snort-1.9.0 and store Snort documentation

files in that directory. You will see files like FAQ (Frequently Asked
Questions), README and other files in this directory.

• Create a file snort-plain in /usr/sbin directory. This is the Snort daemon.
• Create a file /etc/rc.d/init.d/snortd file which is startup and shutdown script. On

RedHat Linux, this is equivalent to /etc/init.d/snortd.

Basic installation is complete at this point and you can start using Snort. The ver-
sion of Snort installed this way is not compiled with database support, so you can use it
only for logging to files in the /var/log/snort directory.

2.2.1.3 Starting, Stopping and Restarting Snort
To run Snort manually, use the following command:

/etc/init.d/snortd start

This command will start Snort and you can run the Snort daemon using the “ps
–ef” command. You should see a line like the following in the output of this com-
mand:

root 15999 1 0 18:31 ? 00:00:01 /usr/sbin/
snort -A fast -b -l /var/log/snort -d -D -i eth0 -c /etc/
snort/snort.conf

Note that you have to start Snort manually each time you reboot the machine. You
can automate this process by creating links to this file, which will be explained later in
this chapter.

To stop Snort, use the following command:

/etc/init.d/snortd stop

To restart Snort, use this command:

/etc/init.d/snortd restart

2.2.2 Installing Snort from Source Code

To install Snort from the source code, you have to build it first. You can build the
executable snort file using the procedure explained in this section. First, download

30 Chapter 2 • Installing Snort and Getting Started

the latest version of Snort from its web site (http://www.snort.org/). Just look for the
“download” link and grab the latest version of the software. At the time of writing this
book, the latest version was 1.9.0. The downloadable file name is snort-
1.9.0.tar.gz, which can be saved in the /opt directory on the Linux box. Note that
the installation method is similar for other versions which may be available by the time
you read this book.

N O T E You must have libpcap installed on your UNIX machine or WinPcap if you
are using Microsoft Windows. You can get WinPcap from http://winpcap.polito.it/. Lib-
pcap is available from http://www-nrg.ee.lbl.gov/.

2.2.2.1 Unpacking
The first step after downloading is unpacking the source code. Use the following

command to unpack it:

tar zxvf snort-1.9.0.tar.gz

This will create a directory /opt/snort-1.9.0, assuming that you have downloaded
the file in /opt directory and have run the tar command in this directory. In case of
other versions of Snort, the directory name will be different and will reflect the ver-
sion number. After unpacking you can see the directory tree created by the tar com-
mand using the tree command. The following is a snapshot of directories present
under /opt/snort-1.9.0 directory.

[root@conformix opt]# tree -d snort-1.9.0
snort-1.9.0
|-- contrib
|-- doc
|-- etc
|-- rules
|-- src
| |-- detection-plugins
| |-- output-plugins
| |-- preprocessors
| `-- win32
| |-- WIN32-Code
| |-- WIN32-Includes
| | |-- NET
| | |-- NETINET
| | |-- libnet
| | |-- mysql
| | `-- rpc
| |-- WIN32-Libraries
| | |-- libnet

Installing Snort 31

| | `-- mysql
| `-- WIN32-Prj
`-- templates

21 directories
[root@conformix opt]#

A brief list of the contents of these directories is listed below:

• The contrib directory contains utilities which are not strictly part of Snort
itself. These utilities include ACID, MySQL database creation scripts and other
things.

• The doc directory contains documentation files, as is evident from the name of
the directory.

• The etc directory contains configuration files.
• The rules directory contains predefined rule files.
• All source code is present under the src directory.
• The templates directory is useful only for people who want to write their

own plug-ins. It has no significance for general Snort users.

2.2.2.2 Compiling and Installation
The compilation and installation process consists of three steps as listed below:

1. Running the configure script.
2. Running the make command.
3. Running the make install command.

To start the compilation process of Snort, go to /opt/snort-1.9.0 directory
and run the configure script. If you are new to GNU style software, the config-
ure script is a common utility with open source packages. It is used to set some param-
eters, create makefiles, and detect development tools and libraries available on your
system. Many command line options can be used with the configure script. These
options determine which Snort components will be compiled with Snort. For example,
using these options, you can build support of SNMP, MySQL or SMB alerts, in addition
to many other things. You can also determine the directory in which the final Snort files
will be installed. Available command line options with the configure script can be listed
using the “./configure –help” command as shown below:

32 Chapter 2 • Installing Snort and Getting Started

[root@conformix snort-1.9.0]# ./configure --help
Usage: configure [options] [host]
Options: [defaults in brackets after descriptions]
Configuration:
 --cache-file=FILE cache test results in FILE
 --help print this message
 --no-create do not create output files
 --quiet, --silent do not print `checking...' messages
 --version print the version of autoconf that
 created configure
Directory and file names:
 --prefix=PREFIX install architecture-independent
 files in PREFIX
 [/usr/local]
 --exec-prefix=EPREFIX install architecture-dependent
 files in EPREFIX
 [same as prefix]
 --bindir=DIR user executables in DIR
 [EPREFIX/bin]
 --sbindir=DIR system admin executables in DIR
 [EPREFIX/sbin]
 --libexecdir=DIR program executables in DIR
 [EPREFIX/libexec]
 --datadir=DIR read-only architecture-independent
 data in DIR
 [PREFIX/share]
 --sysconfdir=DIR read-only single-machine data in
 DIR [PREFIX/etc]
 --sharedstatedir=DIR modifiable architecture-independent
 data in DIR
 [PREFIX/com]
 --localstatedir=DIR modifiable single-machine data in
 DIR [PREFIX/var]
 --libdir=DIR object code libraries in DIR
 [EPREFIX/lib]
 --includedir=DIR C header files in DIR
 [PREFIX/include]
 --oldincludedir=DIR C header files for non-gcc in DIR
 [/usr/include]
 --infodir=DIR info documentation in DIR
 [PREFIX/info]
 --mandir=DIR man documentation in DIR
 [PREFIX/man]
 --srcdir=DIR find the sources in DIR
 [configure dir or ..]
 --program-prefix=PREFIX prepend PREFIX to installed program
 names

Installing Snort 33

 --program-suffix=SUFFIX append SUFFIX to installed program
 names
 --program-transform-name=PROGRAM
 run sed PROGRAM on installed
 program names
Host type:
 --build=BUILD configure for building on BUILD
 [BUILD=HOST]
 --host=HOST configure for HOST [guessed]
 --target=TARGET configure for TARGET [TARGET=HOST]
Features and packages:
 --disable-FEATURE do not include FEATURE (same as
 --enable-FEATURE=no)
 --enable-FEATURE[=ARG] include FEATURE [ARG=yes]
 --with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
 --without-PACKAGE do not use PACKAGE (same as
 --with-PACKAGE=no)
 --x-includes=DIR X include files are in DIR
 --x-libraries=DIR X library files are in DIR
--enable and --with options recognized:
 --enable-debug enable debugging options
 (bugreports and developers only)
 --enable-profile enable profiling options
 (developers only)
 --with-libpcap-includes=DIR libcap include directory
 --with-libpcap-libraries=DIR libcap library directory
 --with-mysql=DIR support for mysql
 --with-odbc=DIR support for odbc
 --with-postgresql=DIR support for postgresql
 --with-oracle=DIR support for oracle
 --with-snmp support for snmp
 --with-openssl=DIR support for openssl
 --enable-sourcefire Enable Sourcefire specific build
 options
 --enable-perfmonitor Enable perfmonitor preprocessor
 --enable-smbalerts SMB alerting capaility via Samba
 --enable-flexresp Flexible Responses on hostile
 connection attempts
[root@conformix snort-1.9.0]#

Options values listed in square brackets indicate that if that particular option is not
selected, the value mentioned in the square bracket will be used by default. For exam-
ple, the following three lines show that if the with-prefix option is not used on the
command line for the configure script, /usr/local value will be used as PREFIX
by default. Note that PREFIX is the directory under which Snort files are installed
when you use the “make install” command.

34 Chapter 2 • Installing Snort and Getting Started

 --prefix=PREFIX install architecture-independent

 files in PREFIX

 [/usr/local]

A typical session with the configure scripts may be as follows. Output is trun-
cated after displaying the initial output line to save space. Note the options that have
been enabled on the command line.

[root@conformix snort-1.9.0]# ./configure --prefix=/opt/snort
--enable-smbalerts --enable-flexresp --with-mysql --with-snmp
--with-openssl

loading cache ./config.cache

checking for a BSD compatible install... (cached) /usr/bin/
install -c

checking whether build environment is sane... yes

checking whether make sets ${MAKE}... (cached) yes

checking for working aclocal... found

checking for working autoconf... found

checking for working automake... found

checking for working autoheader... found

checking for working makeinfo... found

checking for gcc... (cached) gcc

checking whether the C compiler (gcc) works... yes

checking whether the C compiler (gcc) is a cross-compiler...
no

checking whether we are using GNU C... (cached) yes

checking whether gcc accepts -g... (cached) yes

checking for gcc option to accept ANSI C... (cached) none
needed

checking for ranlib... (cached) ranlib

Output is truncated at the end because the configure script may create a lot of
information. The prefix option on the command line is used to tell the configure
script the location of final installation directory. Other options are used to enable the
following components of Snort:

• Support of MySQL database.

• Support of SNMP traps.

• Support of SMB alerts. SMB alerts are used to send pop-up windows to
Microsoft Windows machines.

• Enable support of flex response. Flex response is used to terminate network
sessions in real time. More information about flex response will be provided in
the following chapters. Note that to enable support of this option, you must

Installing Snort 35

have libnet installed. You can download libnet from http://
www.securityfocus.net. I have used version 1.0.2a for this installation.2

After running the configure script, you can run the following two commands
to compile and install Snort files.

make
make install

The first command may take some time to complete depending upon how powerful
your machine is. When you run the second command, files are installed in the appropriate
directories. The make install command installs Snort binaries in /opt/snort
directory as you selected --prefix=/opt/snort on the command line for the
configure script.

Useful command line parameters that can be used with the configure script are
shown in Table 2-1

2. The installation procedure for libnet is found in the accompanying README file. Basically it con-
sists of four steps:
• Untar the file using tar zxvf libnet-1.0.2a.tar.gz
• Change to directory Libnet-1.0.2a and run the ./configure command.
• Run make command.
• Run make install command.

Table 2-1 Command line parameters used with configure scripts

Parameter Description

--with-mysql Build support of MySQL with Snort.

--with-snmp Build support of SNMP while compiling Snort. You have to use –
with-openssl if you use this option.

--with-openssl Enable OpenSSL support. You may need to use this when you use
SNMP option.

--with-oracle Enable support for Oracle database.

--with-odbc Build support for ODBC in Snort.

--enable-flexresp Enables use of Flex Response which allows canceling hostile connec-
tions. This is still experimental (see README.FLEXRESP file in
Snort distribution).

--enable-smbalerts Enable SMB alerts. Be careful using this as this invokes smbclient
user space process every time it sends an alert.

--prefix=DIR Set directory for installing Snort files.

36 Chapter 2 • Installing Snort and Getting Started

You can also run the “make check” command before running the “make
install” command to make sure that Snort is built properly.

After installing, run Snort to see if the executable file is working. Using the above
mentioned procedure, Snort binary is installed in the /opt/snort/bin directory.
The following command just displays the basic help message of the newly built snort
and command line options.

[root@conformix snort]# /opt/snort/bin/snort -?
Initializing Output Plugins!

-*> Snort! <*-
Version 1.9.0 (Build 209)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
USAGE: /opt/snort/bin/snort [-options] <filter options>
Options:
 -A Set alert mode: fast, full, console,
 or none (alert file alerts only)
 "unsock" enables UNIX socket logging
 (experimental).
 -a Display ARP packets
 -b Log packets in tcpdump format (much
 faster!)
 -c <rules> Use Rules File <rules>
 -C Print out payloads with character data
 only (no hex)
 -d Dump the Application Layer
 -D Run Snort in background (daemon) mode
 -e Display the second layer header info
 -f Turn off fflush() calls after binary log
 writes
 -F <bpf> Read BPF filters from file <bpf>
 -g <gname> Run snort gid as <gname> group (or gid)
 after initialization
 -G <mode> Add reference ids back into alert msgs
 (modes: basic, url)
 -h <hn> Home network = <hn>
 -i <if> Listen on interface <if>
 -I Add Interface name to alert output
 -l <ld> Log to directory <ld>
 -m <umask> Set umask = <umask>
 -M <wrkst> Sends SMB message to workstations in file
 <wrkst>
 (Requires smbclient to be in PATH)
 -n <cnt> Exit after receiving <cnt> packets
 -N Turn off logging (alerts still work)
 -o Change the rule testing order to

Installing Snort 37

 Pass|Alert|Log

 -O Obfuscate the logged IP addresses

 -p Disable promiscuous mode sniffing

 -P <snap> set explicit snaplen of packet

 (default: 1514)

 -q Quiet. Don't show banner and status report

 -r <tf> Read and process tcpdump file <tf>

 -R <id> Include 'id' in snort_intf<id>.pid file

 name

 -s Log alert messages to syslog

 -S <n=v> Set rules file variable n equal to value v

 -t <dir> Chroots process to <dir> after

 initialization

 -T Test and report on the current Snort

 configuration

 -u <uname> Run snort uid as <uname> user (or uid)

 after initialization

 -U Use UTC for timestamps

 -v Be verbose

 -V Show version number

 -w Dump 802.11 management and control frames

 -X Dump the raw packet data starting at the

 link layer

 -y Include year in timestamp in the alert and

 log files

 -z Set assurance mode, match on established

 sesions (for TCP)

 -? Show this information

<Filter Options> are standard BPF options, as seen in TCPDump

[root@conformix snort]#

 If you see this message, you have built Snort properly. In the next section, you
will learn how to configure and run Snort.

2.2.2.3 After Installation Processes
Now that you have built Snort binary, you have to do few things before you can

start using Snort. These include:

1. Create directory /var/log/snort where Snort creates log files by default.

2. Create a directory to save configuration files. I have created /opt/snort/
etc. You can create a directory of your own.

3. Create or copy the Snort configuration file in /opt/snort/etc directory.

38 Chapter 2 • Installing Snort and Getting Started

4. Create a directory /opt/snort/rules and copy default rule files to /opt/
snort/etc directory. The path of this directory is mentioned in the main
snort.conf file and you can create a directory of your own choice if you like.

The steps are explained below in detail.
First, create a directory /var/log/snort where Snort will keep its log files.

You can use any other directory for this purpose but this is the usual place to store Snort
log data files. If you want to use any other directory, you have to use command line
option -l when starting Snort.

Secondly, you have to create the Snort configuration file. When Snort starts, it can
read its configuration, which is snort.conf, from the current directory or from
.snortrc in the home directory of the user who launched Snort. If this file is present
in some other directory, you can also use the -c option on the command line to specify
the name of the rules file. As a starting point, create a directory /opt/snort/etc
directory and copy the snort.conf file that came with the Snort source code files.
Copy classification.config and reference.config files to /opt/
snort/etc directory. These files are included in the main snort.conf file. Also
copy all files from the rules directory of the source code tree to /opt/snort/rules
directory. To perform these actions, you can use the following sequence of commands: 3

mkdir /opt/snort/etc
cp /opt/snort-1.9.0/etc/snort.conf /opt/snort/etc
cp /opt/snort-1.9.0/etc/classification.config /opt/snort/etc
cp /opt/snort-1.9.0/etc/reference.config /opt/snort/etc
mkdir /opt/snort/rules
cp /opt/snort-1.9.0/rules/* /opt/snort/rules

Files in the rules directory end with .rules and contain different rules. These
files are included inside the snort.conf file. The location of these rule files is con-
trolled by the RULE_PATH variable defined in snort.conf file. A typical definition
of this variable in the snort.conf file is as follows:

var RULE_PATH ../rules

This means that rule files are located in a directory named “rules”. The path ../
rules is with reference to the location of snort.conf file. For example, if
snort.conf file is located in the /opt/snort/etc directory, all rule files should
be present in the /opt/snort/rules directory. As another example, if
snort.conf file is present in the /var/snort directory, rules files must be

3. Note that you must have root access to run these commands.

Installing Snort 39

present in the /var/rules directory. You can keep all rule files and snort.conf
file in the same directory if you set the value of this variable to ./ instead of ../
rules in the snort.conf file using the following line:

var RULE_PATH ./

More information about Snort rules is found in the next chapter where you will
learn how to define your own rules as well.

The classification.config file contains information about Snort rules
classification and more information about this file is found in the next chapter. Note that
/opt/snort-1.9.0 is the directory where all Snort source code files are present. If
you are using a different version of Snort, the directory name will be different.

The reference.config file lists URLs for different reference web sites
where more information can be found for alerts. These references are used in Snort
rules and you will learn more about references in the next chapter. A typical refer-
ence.config file is like the following:

$Id: reference.config,v 1.3 2002/08/28 14:19:15 chrisgreen
Exp $

The following defines URLs for the references found in the
rules

#

config reference: system URL

config reference: bugtraq http://www.securityfocus.com/bid/

config reference: cve http://cve.mitre.org/cgi-bin/
cvename.cgi?name=

config reference: arachNIDS http://www.whitehats.com/info/IDS

Note, this one needs a suffix as well.... lets add that in a
bit.

config reference: McAfee http://vil.nai.com/vil/content/v_

config reference: nessus http://cgi.nessus.org/plugins/
dump.php3?id=

config reference: url http://

Note that both classification.config and reference.config files
are included in the main snort.conf file.

N O T E If you used the RPM package, all configuration files are already present in
the /etc/snort directory and you don’t need to take the above mentioned actions.

40 Chapter 2 • Installing Snort and Getting Started

Now you can start Snort using the following command. The command displays
startup messages and then starts listening to interface eth0. Note the command line
option where snort.conf is specified with its full path. I would recommend always
using the full path for snort.conf on the command line to avoid any confusion.

[root@conformix snort]# /opt/snort/bin/snort -c /opt/snort/
etc/snort.conf
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--
Decoding Ethernet on interface eth0
Initializing Preprocessors!
Initializing Plug-ins!
Parsing Rules file /opt/snort/etc/snort.conf

+++
Initializing rule chains...
No arguments to frag2 directive, setting defaults to:
 Fragment timeout: 60 seconds
 Fragment memory cap: 4194304 bytes
 Fragment min_ttl: 0
 Fragment ttl_limit: 5
 Fragment Problems: 0
Stream4 config:
 Stateful inspection: ACTIVE
 Session statistics: INACTIVE
 Session timeout: 30 seconds
 Session memory cap: 8388608 bytes
 State alerts: INACTIVE
 Evasion alerts: INACTIVE
 Scan alerts: ACTIVE
 Log Flushed Streams: INACTIVE
 MinTTL: 1
 TTL Limit: 5
 Async Link: 0
No arguments to stream4_reassemble, setting defaults:
 Reassemble client: ACTIVE
 Reassemble server: INACTIVE
 Reassemble ports: 21 23 25 53 80 143 110 111 513
 Reassembly alerts: ACTIVE
 Reassembly method: FAVOR_OLD
http_decode arguments:
 Unicode decoding
 IIS alternate Unicode decoding

Installing Snort 41

 IIS double encoding vuln
 Flip backslash to slash
 Include additional whitespace separators
 Ports to decode http on: 80
rpc_decode arguments:
 Ports to decode RPC on: 111 32771
telnet_decode arguments:
 Ports to decode telnet on: 21 23 25 119
Conversation Config:
 KeepStats: 0
 Conv Count: 32000
 Timeout : 60
 Alert Odd?: 0
 Allowed IP Protocols: All

Portscan2 config:
 log: /var/log/snort/scan.log
 scanners_max: 3200
 targets_max: 5000
 target_limit: 5
 port_limit: 20
 timeout: 60
1273 Snort rules read...
1273 Option Chains linked into 133 Chain Headers
0 Dynamic rules
+++

Rule application order: ->activation->dynamic->alert->pass-
>log

 --== Initialization Complete ==--

-*> Snort! <*-
Version 1.9.0 (Build 209)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)

 As you can see from the previous output, Snort has started listening to interface
eth0. If any packet matches the rules, Snort will take appropriate action according to
that rule and will generate alerts. Alerts may be generated in different forms. Alerts that
you will see with this basic setup are logged in /var/log/snort/alerts file.
Later on you will see how to generate alerts in other forms and log them to a database.
You will also learn about the format of the alert data files generated by Snort later.

You can terminate the Snort session any time by pressing the Ctrl and C keys
simultaneously. At this point, Snort will display a summary of its activity and then quit.
A typical summary is as follows:

42 Chapter 2 • Installing Snort and Getting Started

==
Snort analyzed 65 out of 65 packets, dropping 0(0.000%)
packets

Breakdown by protocol: Action Stats:
 TCP: 55 (84.615%) ALERTS: 10
 UDP: 10 (15.385%) LOGGED: 10
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 0 (0.000%)
DISCARD: 0 (0.000%)
==
Wireless Stats:
Breakdown by type:
 Management Packets: 0 (0.000%)
 Control Packets: 0 (0.000%)
 Data Packets: 0 (0.000%)
==
Fragmentation Stats:
Fragmented IP Packets: 0 (0.000%)
 Fragment Trackers: 0
 Rebuilt IP Packets: 0
 Frag elements used: 0
Discarded(incomplete): 0
 Discarded(timeout): 0
 Frag2 memory faults: 0
==
TCP Stream Reassembly Stats:
 TCP Packets Used: 55 (84.615%)
 Stream Trackers: 1
 Stream flushes: 0
 Segments used: 0
 Stream4 Memory Faults: 0
==
Snort received signal 2, exiting
[root@conformix snort]#

The above mentioned procedure runs Snort in the foreground and you don’t get the
command prompt back. To run Snort in the background, you can use the -D command
line switch. In this case Snort still logs all of its information in the log directory /var/
log/snort and you get the command prompt back. Note that when you installed
Snort using the pre-compiled RPM package as explained earlier, you can run Snort using
the “/etc/init.d/snortd start” command that starts Snort in the background.

Installing Snort 43

2.2.3 Errors While Starting Snort

At this point, if you have compiled Snort by yourself, you may see the following
error when starting Snort:

[!] ERROR: Cannot get write access to logging directory "/var/
log/snort".

(directory doesn't exist or permissions are set incorrectly

or it is not a directory at all)

Fatal Error, Quitting..

This error is due to the fact that you have not created the /var/log/snort
directory. Use the “mkdir /var/log/snort” command and the error will go
away.

If you get an error message like the following, you have not specified the Snort
configuration file name correctly on the command line or you started Snort without
specifying a configuration file name.

Initializing rule chains...

ERROR: Unable to open rules file: /root/.snortrc or /root//
root/.snortrc

Fatal Error, Quitting..

Note that you can run Snort without specifying a configuration file name if one of
the following conditions is true:

1. You are in the same directory where the configuration file exists when you start
Snort.

2. You have copied the configuration file in your home directory as .snortrc.

2.2.4 Testing Snort

After starting Snort, you need to know if it is actually capturing data and logging
intruder activity. If you started Snort in the foreground with the “-A console” com-
mand line option, you will start seeing alerts on the screen when this script is running.
However, if you have started Snort in the daemon mode and did not use the command
line option mentioned above, alerts will be logged to the /var/log/snort/alert
file.

The following command generates some alerts that you can see on the console or
in the /var/log/snort/alert file. Generation of alerts indicates that Snort is
working properly.

44 Chapter 2 • Installing Snort and Getting Started

ping -n -r -b 255.255.255.255 -p "7569643d3028726f6f74290a" -
c3

Alerts displayed on screen will look like the following. Again note that to display
alerts on screen, you have to use the “–A console” command line option.

11/19-18:51:04.560952 [**] [1:498:3] ATTACK RESPONSES id
check returned root [**] [Classification: Potentially Bad
Traffic] [Priority: 2] {ICMP} 10.100.1.105 -> 255.255.255.255

2.2.4.1 Generating Test Alerts
The following script name is snort-test.sh and it is available on the website (http://
authors.phptr.com/rehman/) that accompanies the book. Basically it uses the same command as
mentioned above but is useful when Snort is running in the daemon mode.

 1 #!/bin/sh
 2 #
 3 ###
 4 # You are free to copy and distribute this script under #
 5 # GNU Public License until this part is not removed #
 6 # from the script. #
 7 ###
 8 # HOW TO USE #
 9 # #
 10 # Right after installation of Snort, run this script. #
 11 # It will generate alerts in /var/log/snort/alert file similar#
 12 # to the following: #
 13 # #
 14 # Note that Snort must be running at the time you run this #
 15 # script. #
 16 # #
 17 # [**] [1:498:3] ATTACK RESPONSES id check returned root [**] #
 18 # [Classification: Potentially Bad Traffic] [Priority: 2] #
 19 # 08/31-15:56:48.188882 255.255.255.255 -> 192.168.1.111 #
 20 # ICMP TTL:150 TOS:0x0 ID:0 IpLen:20 DgmLen:84 #
 21 # Type:0 Code:0 ID:45596 Seq:1024 ECHO REPLY #
 22 # #
 23 # These alerts are displayed at the end of the script. #
 24 ###
 25 #
 26 clear
 27 echo "###"
 28 echo "# Script to test Snort Installation #"
 29 echo "# Written By #"
 30 echo "# #"
 31 echo "# Rafeeq Rehman #"
 32 echo "# rr@argusnetsec.com #"
 33 echo "# Argus Network Security Services Inc. #"
 34 echo "# http://www.argusnetsec.com #"
 35 echo "###"
 36 echo
 37

Installing Snort 45

 38 echo
 39 echo "###"
 40 echo "The script generates three alerts in file /var/log/snort/alert"
 41 echo "Each alert should start with message like the following:"
 42 echo
 43 echo " \"ATTACK RESPONSES id check returned root\" "
 44 echo "###"
 45 echo
 46 echo "Enter IP address of any other host on this network. If you"
 47 echo "don't know any IP address, just hit Enter key. By default"
 48 echo -n "broacast packets are used [255.255.255.255] : "
 49
 50 read ADDRESS
 51
 52 if [-z $ADDRESS]
 53 then
 54 ADDRESS="255.255.255.255"
 55 fi
 56
 57 echo
 58 echo "Now generating alerts. If it takes more than 5 seconds, break"
 59 echo "the script by pressing Ctrl-C. Probably you entered wrong IP"
 60 echo "address. Run the script again and don't enter any IP address"
 61
 62 ping -i 0.3 -n -r -b $ADDRESS -p "7569643d3028726f6f74290a" -c3 2>/dev/
null >/dev/null
 63
 64 if [$? -ne 0]
 65 then
 66 echo "Alerting generation failed."
 67 echo "Aborting ..."
 68 exit 1
 69 else
 70 echo
 71 echo "Alert generation complete"
 72 echo
 73 fi
 74
 75 sleep 2
 76
 77
 78 echo
 79 echo "##"
 80 echo "Last 18 lines of /var/log/snort/alert file will be displayed now"
 81 echo "If snort is working properly, you will see recently generated"
 82 echo "alerts with current time"
 83 echo "##"
 84 echo
 85 echo "Hit Enter key to continue ..."
 86 read ENTER
 87
 88 if [! -f /var/log/snort/alert]

46 Chapter 2 • Installing Snort and Getting Started

 89 then

 90 echo "The log file does not exist."

 91 echo "Aborting ..."

 92 exit 1

 93 fi

 94

 95 tail -n18 /var/log/snort/alert

 96

 97 echo

 98 echo "Done"

 99 echo

This script generates alerts which you can see in the /var/log/snort/
alert file (if running in daemon mode) or on the screen where Snort is running. Alerts
are generated by sending ICMP echo packets with a predefined pattern in the data part.
The echo command is used for this purpose. This pattern triggers the following Snort
rule, generating an alert.

alert ip any any -> any any (msg:"ATTACK RESPONSES id check
returned root"; content: "uid=0(root)"; classtype:bad-unknown;
sid:498; rev:3;)

After generating alerts, the script will display the last eighteen lines of the /var/
log/snort/alert file.

Now let us examine different parts of this script and how it works. Lines 52 to 55
prompt a user to enter an address to which ping packets should be sent. If no address is
entered, a broadcast address (255.255.255.255) is assumed and ping packets are sent as
broadcast packets.

Line 62 actually generates the ICMP packets that cause the rule to be triggered.
Note that pattern “7569643d3028726f6f74290a” is equal to “uid=0(root)” which
is the pattern required to generate alerts.

The -c3 command line parameter causes three packets to be sent. Note that stan-
dard input and standard error are redirected to /dev/null to make sure that no mes-
sages are displayed on the screen. For a detail of all options used with the ping
command, see its man pages using the “man ping” command.

Lines 64 to 73 check the result of the ping command. A message is displayed indi-
cating the success or failure of the ping command. If the command fails, the script
aborts at this point and no further processing is done.

If alerts are to be generated successfully, they must be present in the /var/log/
snort/alert file. Lines 88 to 93 verify that the file exists. If the file does not exist,
the script is aborted.

Installing Snort 47

If all goes well, line 95 shows output of alerts generated by displaying the last
eighteen lines in the /var/log/snort/alert file.

2.2.4.2 Generating Test Alerts with Automatic Snort Startup
If you installed Snort in the /opt/snort directory, you can also use the follow-

ing script that will start and stop Snort by itself and verify that it is working properly.
Make sure that Snort is NOT already running before starting this script because the
script starts Snort by itself. This script is found as snort-test-auto.sh file on the
website http://authors.phptr.com/rehman/.

 1 #!/bin/sh
 2 #
 3 ###
 4 # You are free to copy and distribute this script under #
 5 # GNU Public License until this part is not removed #
 6 # from the script. #
 7 ###
 8 # HOW TO USE #
 9 # #
 10 # Right after installation of Snort, run this script. #
 11 # It is assumed that snort executable is present in the #
 12 # /opt/argus/bin directory and all rules and configuration #
 13 # files are present under /opt/argus/etc/snort directory. #
 14 # If files are in other locations, edit the following location#
 15 # of variables. If you used the installation script provided #
 16 # along with this script, the files will be automatically #
 17 # located in appropriate directories. #
 18 # #
 19 # Note that the script starts and stops Snort by itself and #
 20 # you should make sure that Snort is not running at the time #
 21 # you run this script. #
 22 # #
 23 # It will generate alerts in /tmp/alert file similar #
 24 # to the following: #
 25 # #
 26 # [**] [1:498:3] ATTACK RESPONSES id check returned root [**] #
 27 # [Classification: Potentially Bad Traffic] [Priority: 2] #
 28 # 08/31-15:56:48.188882 255.255.255.255 -> 192.168.1.111 #
 29 # ICMP TTL:150 TOS:0x0 ID:0 IpLen:20 DgmLen:84 #
 30 # Type:0 Code:0 ID:45596 Seq:1024 ECHO REPLY #
 31 # #
 32 # These alerts are displayed at the end of the script. #
 33 ###
 34 #
 35
 36 PREFIX=/opt/snort
 37 SNORT=$PREFIX/bin/snort
 38 SNORT_CONFIG=$PREFIX/etc/snort.conf
 39 LOG_DIR=/tmp
 40 ALERT_FILE=$LOG_DIR/alert

48 Chapter 2 • Installing Snort and Getting Started

 41 ALERT_FILE_OLD=$LOG_DIR/alert.old
 42 ADDRESS="255.255.255.255"
 43
 44 clear
 45
 46 echo "###"
 47 echo "# Script to test Snort Installation #"
 48 echo "# Written By #"
 49 echo "# #"
 50 echo "# Rafeeq Rehman #"
 51 echo "# rr@argusnetsec.com #"
 52 echo "# Argus Network Security Services Inc. #"
 53 echo "# http://www.argusnetsec.com #"
 54 echo "###"
 55 echo
 56
 57 echo
 58 echo "###"
 59 echo "The script generates three alerts in file /tmp/alert"
 60 echo "Each alert should start with message like the following:"
 61 echo
 62 echo " \"ATTACK RESPONSES id check returned root\" "
 63 echo "###"
 64 echo
 65
 66 if [! -d $LOG_DIR]
 67 then
 68 echo "Creating log directory ..."
 69 mkdir $LOG_DIR
 70
 71 if [$? -ne 0]
 72 then
 73 echo "Directory $LOGDIR creation failed"
 74 echo "Aborting ..."
 75 exit 1
 76 fi
 77 fi
 78
 79 if [-f $ALERT_FILE]
 80 then
 81 mv -f $ALERT_FILE $ALERT_FILE_OLD
 82
 83 if [$? -ne 0]
 84 then
 85 echo "Can't rename old alerts file."
 86 echo "Aborting ..."
 87 exit 1
 88 fi
 89 fi
 90
 91 if [! -f $SNORT]
 92 then

Installing Snort 49

 93 echo "Snort executable file $SNORT does not exist."
 94 echo "Aborting ..."
 95 exit 1
 96 fi
 97
 98 if [! -f $SNORT_CONFIG]
 99 then
 100 echo "Snort configuration file $SNORT_CONFIG does not exist."
 101 echo "Aborting ..."
 102 exit 1
 103 fi
 104
 105 if [! -x $SNORT]
 106 then
 107 echo "Snort file $SNORT is not executable."
 108 echo "Aborting ..."
 109 exit 1
 110 fi
 111
 112 echo "Starting Snort ..."
 113 $SNORT -c $SNORT_CONFIG -D -l /tmp 2>/dev/null
 114
 115 if [$? -ne 0]
 116 then
 117 echo "Snort startup failed."
 118 echo "Aborting ..."
 119 exit 1
 120 fi
 121
 122 echo
 123 echo "Now generating alerts."
 124
 125 ping -i 0.3 -n -r -b $ADDRESS -p "7569643d3028726f6f74290a" -c3 2>/dev/
null >/dev/null
 126
 127 if [$? -ne 0]
 128 then
 129 echo "Alerting generation failed."
 130 echo "Aborting ..."
 131 exit 1
 132 else
 133 echo
 134 echo "Alert generation complete"
 135 echo
 136 fi
 137
 138 sleep 2
 139
 140 tail -n18 $ALERT_FILE 2>/dev/null | grep "ATTACK RESPONSES id check" >/
dev/null
 141
 142 if [$? -ne 0]

50 Chapter 2 • Installing Snort and Getting Started

 143 then
 144 echo "Snort test failed."
 145 echo "Aborting ..."
 146 exit 1
 147 fi
 148
 149 echo "Stopping Snort ..."
 150 pkill snort >/dev/null 2>&1
 151
 152 if [$? -ne 0]
 153 then
 154 echo "Snort stopping failed."
 155 echo "Aborting ..."
 156 exit 1
 157 fi
 158
 159 echo
 160 echo "Done. Snort installation is working properly"
 161 echo

As you may have noted, this scripts creates alert file in the /tmp directory which
is used to find out if the alert creation was successful. When you run the script and
everything is working fine, you will see the following output:

###
Script to test Snort Installation
Written By
#
Rafeeq Rehman
rr@argusnetsec.com
Argus Network Security Services Inc.
http://www.argusnetsec.com
###

###
The script generates three alerts in file /tmp/alert
Each alert should start with message like the following:

 "ATTACK RESPONSES id check returned root"
##

Starting Snort ...

Now generating alerts.

Alert generation complete

Stopping Snort ...

Done. Snort installation is working properly

Installing Snort 51

This script does a number of things when you run it. First of all it sets values of
some variables using lines from line number 36 to 42.

After setting these variables, the script goes through the following steps:

• Lines 66 to 77 are used to check for the presence of $LOG_DIR directory. The
variable LOG_DIR defined in line 39 shows that this directory is /tmp. If the
directory does not exist, the script creates it.

• Lines 79 to 89 are used to check for the presence of $ALERT_FILE, which is
/tmp/alert. If the file exists, the scripts renames it as /tmp/alert.old.

• Lines 91 to 96 are used to check for the presence of Snort binary file $SNORT,
which is /opt/snort/bin/snort. If the file is not present, execution is
stopped.

• Lines 98 to 103 are used to check for the presence of $SNORT_CONFIG file,
which is /opt/snort/etc/snort.conf. If the file does not exist,
execution is stopped.

• Lines 105 to 110 make sure that the Snort binary file is indeed executable.

• Line number 113 starts Snort.

• Lines 115 to 120 check that Snort was started successfully.

• Line 125 generates alerts as described in the previous section. These alerts are
sent to broadcast address.

• Lines 127 to 136 are used to make sure that the alert generation process was
successful.

• Line 140 checks the last eighteen lines of the alert file to verify that alerts were
generated and log entries are created successfully.

• Lines 142 to 147 display an error message if the test in line 140 failed.

• Line 150 stops Snort.

• Line 160 displays a message showing that the test generation process was
successful.

2.2.5 Running Snort on a Non-Default Interface

On Linux systems, Snort starts listening to network traffic on Ethernet interface
eth0. Many people run Snort on multi-interface machines. If you want Snort to listen
to some other interface, you have to specify it on the command line using the -i option.
The following command starts Snort so that it listens to network interface eth1.

snort -c /opt/snort/etc/snort.conf –i eth1

52 Chapter 2 • Installing Snort and Getting Started

In case of automatic startup and shutdown as explained in the next section, you
have to modify /etc/init.d/snortd script so that Snort starts on the desired
interface at boot time.

2.2.6 Automatic Startup and Shutdown

You can configure Snort to start at boot time automatically and stop when the system
shuts down. On UNIX-type machines, this can be done through a script that starts and
stops Snort. The script is usually created in the /etc/init.d directory on Linux. A link
to the startup script may be created in /etc/rc3.d directory and shutdown links may be
present in /etc/rc2.d, /etc/rc1.d and /etc/rc0.d directories. A typical script
file /etc/init.d/snortd that is bundled with Snort RPM is as shown below:4

[root@conformix]# cat /etc/init.d/snortd
#!/bin/sh
#
snortd Start/Stop the snort IDS daemon.
#
chkconfig: 2345 40 60
description: snort is a lightweight network intrusion
detection tool that
currently detects more than 1100 host and network
vulnerabilities, portscans, backdoors, and more.
#
June 10, 2000 -- Dave Wreski <dave@linuxsecurity.com>
- initial version
#
July 08, 2000 Dave Wreski <dave@guardiandigital.com>
- added snort user/group
- support for 1.6.2
July 31, 2000 Wim Vandersmissen <wim@bofh.st>
- added chroot support

Source function library.
. /etc/rc.d/init.d/functions

Specify your network interface here
INTERFACE=eth0

See how we were called.
case "$1" in
 start)

4. If you are creating a startup/shutdown script when you compile Snort yourself, you have to modify
paths to Snort files according to your installation. This script still works very well as a reference
starting point.

Installing Snort 53

 echo -n "Starting snort: "
 cd /var/log/snort
 daemon /usr/sbin/snort -A fast -b -l /var/log/snort \
 –d -D -i $INTERFACE -c /etc/snort/snort.conf
 touch /var/lock/subsys/snort
 echo
 ;;
 stop)
 echo -n "Stopping snort: "
 killproc snort
 rm -f /var/lock/subsys/snort
 echo
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 status)
 status snort
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|status}"
 exit 1
esac

exit 0
[root@conformix /root]#

Note that the same file is used to start and stop Snort. The first character in the
name of the link file determines if Snort will be started or stopped in a particular run
level. The startup link file starts with the character S. A typical startup file is /etc/
rc3.d/S50snort which is actually linked to /etc/init.d/snortd file. Simi-
larly, a typical shutdown script file starts with the letter K. For example, you can create
/etc/rc2.d/K50snort file. The init daemon will automatically start Snort when
the system moves to run level 3 and will stop it when the system goes to run level 2.

You can start and stop Snort using the script manually as well. The following two
lines start and stop Snort respectively.

/etc/init.d/snortd start

/etc/init.d/snortd stop

Note that the script and its links in the appropriate directories may have different
names. Names for links to the script entirely depend upon at what point during the star-
tup/shutdown process you want to start and stop Snort. If you used an RPM file, these
links will be created during the installation procedure of the RPM package.

54 Chapter 2 • Installing Snort and Getting Started

2.3 Running Snort on Multiple Network Interfaces
When you start Snort, it listens to traffic on one interface. Using the command line
option –i <interface_name> , you can specify the interface on which you want to
run it. If you want to listen to multiple network interfaces, you have to run multiple cop-
ies of Snort in parallel. As an example, the following two commands start listening to
network interfaces eth0 and eth1 on a Linux machine.

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -i eth0 -l /
var/log/snort0
/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -i eth1 -l /
var/log/snort1

Note that you have created two log directories, /var/log/snort0 and /var/
log/snort1, so that both of the Snort sessions keep their log files separate. These
directories must exist before you start Snort.

If both sessions log to a MySQL database, which is configured through
snort.conf file, the same database can be used.

Note that you can also have different configuration files for these two sessions.
There may be many reasons for having separate configuration files. The main reason is
that HOME_NETWORK is different for the two sessions. Another reason may be that
you want to log alert data in log files for one interface and in a database for the second
interface. This is shown in Figure 2-2.

Figure 2-2 Running Snort on multiple network interfaces and logging to different places.

Snort Command Line Options 55

2.4 Snort Command Line Options

Snort has many command line options that are very useful for starting Snort in different
situations. As you have already seen, command line options are helpful in running mul-
tiple versions of Snort on the same system. You can use “snort -?” command to dis-
play command line options. Most commonly used and useful command line options are
listed in Table 2-2.

Table 2-2 Snort command line options

Options Description

-A This options sets alert mode. Alert modes are used to set different levels of detail with
the alert data. Options available are fast, full, console or none. You have already seen
that the console mode is used to display alert data on the console screen instead of log-
ging to files. The fast mode is useful for high-speed operations of Snort.

-b This option is used to log packets in tcpdump format. Logging is very fast and you
can use the tcpdump program later on to display the data.

-c This is the most commonly used option. You specify the location of snort.conf file
with this option. When specified, Snort does not look into default locations of the con-
figuration file snort.conf. As an example, if the snort.conf file is present in /etc
directory, you will use “-c /etc/snort.conf” on the command line while start-
ing Snort.

-D This option enables Snort to run in the background. In almost all implementations of
Snort, this option is used. You don’t use this option when you are testing Snort after
installation.

-i This option is used to start Snort so that it listens to a particular network interface. This
option is very useful when you have multiple network adapters and want to listen to
only one of them. It is also useful when you want to run multiple Snort sessions on mul-
tiple network interfaces. For example, if you want Snort to listen to network interface
eth1 only, you will use “-i eth1” on the command line while starting Snort.

-l This option is used to set the directory where Snort logs messages. The default location
is /var/log/snort. For example, if you want all log files to be generated under /
snort directory, you will use “-l /snort” command line option.

-M You have to specify a text file as argument to this option. The text file contains a list of
Microsoft Windows hosts to which you want to send SMB pop-up windows. Each line
should contain only one IP address. Note that you can achieve the same goal through
snort.conf file as well, which will be explained later.

-T This option is very useful for testing and reporting on the Snort configuration. You can
use this option to find any errors in the configuration files.

56 Chapter 2 • Installing Snort and Getting Started

There are many other options which are less frequently used. These options will
be discussed in related sections later on. The functionality of some command line
options can be achieved through snort.conf file as well.

2.5 Step-By-Step Procedure to Compile and Install Snort
From Source Code

Installing Snort from the RPM package is very easy since you have to use only one
command, “rpm -install <snort_file_name.rpm>”. However, as you have
seen, installing from the source code requires much more work. To summarize the pro-
cess of installing from the source code, here is a step-by-step procedure:

• Download source code file from http://www.snort.org.
• Unpack the tar file using “tar zxvf <filename.tar.gz>” command.

• Run the configure script. Typical command line is something like
“configure --prefix=/opt/snort --with-mysql -with-
snmp -with-opnssl”.

• Run the make command.
• Run the “make install” command.
• Create a directory /var/log/snort.

• Create a directory /opt/snort/etc.
• Create a directory /opt/snort/rules.
• Copy snort.conf to /opt/snort/etc directory.
• Copy classification.config file to /opt/snort/etc directory.

• Copy reference.config file to /opt/snort/etc directory.
• Copy all rule files to /opt/snort/rules directory.
• Create startup script snortd and copy it to /etc/init.d directory. Create

its links in /etc/rcx directories, where x is a run level number, so that Snort
starts at the boot time.

• If you are using MySQL with Snort, it should be started before starting Snort.

2.6 Location of Snort Files

Snort files can be categorized as follows:

• The Snort binary files, which is the actual executable.
• The Snort configuration file, which is typically snort.conf.

Location of Snort Files 57

• Other Snort configuration files like classification.config and
reference.config.

• Rule files.
• Log files.

If you install Snort from the RPM package, the Snort binary file is usually
installed in /usr/sbin directory. If you compile Snort yourself, the location of this
file can be controlled using the --prefix command line option.

The main configuration file snort.conf is installed in /etc/snort direc-
tory when you used Snort RPM. However, you can save this file in any directory
because you have to specify path to this file on the command line when starting Snort.
In the examples used in this book, the file is stored under /opt/snort/etc direc-
tory.

Other configuration files like classification.config and refer-
ence.config are usually stored in the same location as the snort.conf file. The
path to the location of these files is found in the snort.conf file. By changing that
path, you can control the location of these files.

Rules files are referenced in the snort.conf file. If you install Snort from the
RPM package, rules files are also installed in /etc/snort directory. In the examples
in this book, when you compile Snort yourself, you have installed these rule files under
/opt/snort/rules directory. By modifying the snort.conf file, you can select
a different location for the rule files.

The location of Snort log files can be set with the help of snort.conf file or
using command line options. Typically the log files are stored in /var/log/snort
directory. If the log directory does not exist, you have to create it manually. When Snort
is logging data from different hosts, it can create a directory for each host under /var/
log/snort for the log files.

For example, to modify the default location of log files to /snortlog, use the
following line in snort.conf file:

config logdir: /snortlog

You can also change the location of log files using –l command line option when
starting Snort. Chapter 3 contains a more detailed discussion of the snort.conf con-
figuration file.

58 Chapter 2 • Installing Snort and Getting Started

2.7 Snort Modes
Snort operates in two basic modes: packet sniffer mode and NIDS mode. It can be used
as a packet sniffer, like tcpdump or snoop. When sniffing packets, Snort can also log
these packets to a log file. The file can be viewed later on using Snort or tcpdump. No
intrusion detection activity is done by Snort in this mode of operation. Using Snort for
this purpose is not very useful as there are many other tools available for packet log-
ging. For example, all Linux distributions come with the tcpdump program which is
very efficient.

When you use Snort in network intrusion detection (NIDS) mode, it uses its rules
to find out if there is any network intrusion detection activity.

2.7.1 Network Sniffer Mode

In the network sniffer mode, Snort acts like the commonly used program tcpdump.
It can capture and display packets from the network with different levels of detail on the
console. You don’t need a configuration file to run Snort in the packet sniffing mode.
The following command displays information about each packet flowing on the net-
work segment:

[root@conformix snort]# /opt/snort/bin/snort -v
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--
Decoding Ethernet on interface eth0

 --== Initialization Complete ==--

-*> Snort! <*-
Version 1.9.0 (Build 209)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
11/20-15:56:14.632067 192.168.1.100:2474 -> 192.168.1.2:22
TCP TTL:128 TOS:0x0 ID:4206 IpLen:20 DgmLen:40 DF
A* Seq: 0x9DAEEE9C Ack: 0xF5683C3A Win: 0x43E0 TcpLen: 20
=+

11/20-15:56:14.632188 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57042 IpLen:20 DgmLen:200 DF
AP Seq: 0xF5683C8A Ack: 0x9DAEEE9C Win: 0x6330 TcpLen: 20
=+

Snort Modes 59

11/20-15:56:14.632519 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57043 IpLen:20 DgmLen:120 DF
AP Seq: 0xF5683D2A Ack: 0x9DAEEE9C Win: 0x6330 TcpLen: 20
=+

11/20-15:56:14.633891 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57044 IpLen:20 DgmLen:184 DF
AP Seq: 0xF5683D7A Ack: 0x9DAEEE9C Win: 0x6330 TcpLen: 20
=+

Snort will continue to display captured packets on the screen until you break using
Ctrl-C. At the time Snort terminates, it will display statistical information.

Let us now analyze the information displayed on screen when you run Snort in the
packet capture mode. The following is a typical output for a TCP packet:

11/20-15:56:14.633891 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57044 IpLen:20 DgmLen:184 DF
AP Seq: 0xF5683D7A Ack: 0x9DAEEE9C Win: 0x6330 TcpLen: 20

If you analyze the output, you can see the following information about the packet:

• Date and time the packet was captured.
• Source IP address is 192.168.1.2 .
• Source port number is 22.
• Destination IP address is 192.168.1.100.
• Destination port is 2474.
• Transport layer protocol used in this packet is TCP.
• Time To Live or TTL value in the IP header part is 64.
• Type of Service or TOS value is 0x10.
• Packet ID is 57044.
• Length of IP header is 20.
• IP payload is 184 bytes long.
• Don’t Fragment or DF bit is set in IP header.
• Two TCP flags A and P are on.
• TCP sequence number is 0xF5683D7A.
• Acknowledgement number in TCP header is 0xDAEEE9C.
• TCP Window field is 0x6330.
• TCP header length is 20.

You can display more information with captured packets using more command
line options. The following command displays some information about application data

60 Chapter 2 • Installing Snort and Getting Started

attached to the packet in addition to TCP, UDP and ICMP information. Note that the
command still does not display all of the packet data.

[root@conformix snort]# /opt/snort/bin/snort -dv
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--
Decoding Ethernet on interface eth0

 --== Initialization Complete ==--

-*> Snort! <*-
Version 1.9.0 (Build 209)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
11/20-16:18:11.129548 192.168.1.100:2474 -> 192.168.1.2:22
TCP TTL:128 TOS:0x0 ID:4387 IpLen:20 DgmLen:40 DF
A* Seq: 0x9DAEF2FC Ack: 0xF5688CDA Win: 0x4190 TcpLen: 20

=+

11/20-16:18:11.129723 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57171 IpLen:20 DgmLen:120 DF
AP Seq: 0xF5688D2A Ack: 0x9DAEF2FC Win: 0x6330 TcpLen: 20
C5 1D 81 8F 70 B7 12 0B C1 1B 8F 6D A9 8F 1D 05 p......m....
40 7D F9 BD 84 21 11 59 05 01 E4 A1 01 20 AC 92 @}...!.Y..... ..
58 50 73 8D 17 EA E2 17 AD 3A AD 54 E2 50 80 CB XPs......:.T.P..
DA E1 40 30 7B 63 0D 79 5A D8 51 07 93 95 2B A8 ..@0{c.yZ.Q...+.
F8 D4 F5 FA 76 D6 27 35 E8 6E E2 ED 41 2B 01 2D v.'5.n..A+.-

=+

11/20-16:18:11.130802 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57172 IpLen:20 DgmLen:120 DF
AP Seq: 0xF5688D7A Ack: 0x9DAEF2FC Win: 0x6330 TcpLen: 20
E9 7C 09 E0 E0 5C 3E 17 1C BE 93 1F B0 DA 92 40 .|...\>........@
D1 18 71 52 80 F3 B2 F7 59 CE F7 7C D4 8F FD B4 ..qR....Y..|....
98 08 A9 63 63 23 0D C8 9D A4 4F 68 87 06 0D 16 ...cc#....Oh....
44 61 09 CD FF FE 8B 1A 5B D8 42 43 1D 1A 6F A8 Da......[.BC..o.
14 90 C6 63 4C EE 9D 64 1B 90 CC 3A FB BD 7E E4 ...cL..d...:..~.

=+

11/20-16:18:11.131701 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57173 IpLen:20 DgmLen:120 DF

Snort Modes 61

AP Seq: 0xF5688DCA Ack: 0x9DAEF2FC Win: 0x6330 TcpLen: 20
AF CE 60 CB 79 06 BB 3D 58 72 76 F2 51 0F C1 9A ..`.y..=Xrv.Q...
22 5A E3 27 49 F8 A5 00 1B 5A 4F 24 12 0F BF 70 "Z.'I....ZO$...p
B7 81 A0 0C F9 EB 83 D1 33 EB C1 5A 2A E6 2E 4B 3..Z*..K
F1 98 FB 5A A9 C7 C3 92 78 B1 35 FF F7 59 CF B3 ...Z....x.5..Y..
83 D2 E7 FF 37 F8 34 56 CD 0F 61 62 A9 16 A4 9F 7.4V..ab....

=+

11/20-16:18:11.133935 192.168.1.100:2474 -> 192.168.1.2:22
TCP TTL:128 TOS:0x0 ID:4388 IpLen:20 DgmLen:40 DF
A* Seq: 0x9DAEF2FC Ack: 0xF5688D7A Win: 0x40F0 TcpLen: 20

=+

11/20-16:18:11.134057 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 ID:57174 IpLen:20 DgmLen:280 DF
AP Seq: 0xF5688E1A Ack: 0x9DAEF2FC Win: 0x6330 TcpLen: 20
A6 CF F9 B5 EA 24 E0 48 34 45 4B 57 5D FF CB B5 $.H4EKW]...
D6 C9 B3 26 3C 59 66 2C 55 EE C1 CF 09 AD 3A C2 ...&<Yf,U.....:.
74 B6 61 D3 C5 63 ED BD 6F 51 0D 5E 18 44 07 AF t.a..c..oQ.^.D..
86 D2 8A 3F 82 F0 D2 84 5C A6 7F CC D5 7B 90 56 ...?....\....{.V
93 CF CF 4D DE 03 00 4D E4 4B AD 75 3E 03 71 DC ...M...M.K.u>.q.
A6 3D 78 DA 01 BF F0 33 46 7D E1 53 B5 62 94 9A .=x....3F}.S.b..
29 46 56 78 B1 73 C0 3E BB C0 EC 5C 6E D0 E6 BE)FVx.s.>...\n...
F9 5C 02 90 40 B1 BA 07 F1 96 2F A0 0F 9D E1 3E .\..@...../....>
8C 3C 40 07 B2 21 28 CA 2D 41 AC 5C 77 C6 D0 3F .<@..!(.-A.\w..?
73 0B 15 32 47 B5 CE E3 FB 83 B3 72 1A B4 64 9F s..2G......r..d.
6D C7 55 B8 6B DB FC AF 94 8F F3 58 B0 79 CF 14 m.U.k......X.y..
3F 9A FC 32 1D B6 21 B0 4D C3 64 82 C0 62 A8 8C ?..2..!.M.d..b..
80 C7 4A C8 BA D9 C3 0D 74 86 76 B8 49 8A 94 D1 ..J.....t.v.I...
4C F3 BF AF 55 3B 57 2B EA C7 48 B7 A4 BD B2 20 L...U;W+..H....
4A 66 B4 4E F3 2A 7E B6 F8 63 A8 61 42 F3 85 3B Jf.N.*~..c.aB..;

=+

To display all packet information on the console, use the following command.
This command displays captured data in hexadecimal as well as ASCII format.

[root@conformix snort]# /opt/snort/bin/snort -dev
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--
Decoding Ethernet on interface eth0

62 Chapter 2 • Installing Snort and Getting Started

 --== Initialization Complete ==--

-*> Snort! <*-
Version 1.9.0 (Build 209)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
05/27-12:11:10.063820 0:D0:59:6C:9:8B -> FF:FF:FF:FF:FF:FF type:0x800
len:0xFC
192.168.1.100:138 -> 192.168.1.255:138 UDP TTL:128 TOS:0x0 ID:48572
IpLen:20 DgmLen:238
Len: 218
11 0E 82 D5 C0 A8 01 64 00 8A 00 C4 00 00 20 46 d...... F
43 46 43 43 4E 45 4D 45 42 46 41 46 45 45 50 46 CFCCNEMEBFAFEEPF
41 43 41 43 41 43 41 43 41 43 41 43 41 41 41 00 ACACACACACACAAA.
20 41 42 41 43 46 50 46 50 45 4E 46 44 45 43 46 ABACFPFPENFDECF
43 45 50 46 48 46 44 45 46 46 50 46 50 41 43 41 CEPFHFDEFFPFPACA
42 00 FF 53 4D 42 25 00 00 00 00 00 00 00 00 00 B..SMB%.........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 11 00 00 2A 00 00 00 00 00 00 00 00 00 E8 *..........
03 00 00 00 00 00 00 00 00 2A 00 56 00 03 00 01 *.V....
00 01 00 02 00 3B 00 5C 4D 41 49 4C 53 4C 4F 54 ;.\MAILSLOT
5C 42 52 4F 57 53 45 00 0C 00 A0 BB 0D 00 42 41 \BROWSE.......BA
54 54 4C 45 43 4F 57 53 00 00 00 00 01 00 03 0A TTLECOWS........
00 10 00 80 D4 FE 50 03 52 52 2D 4C 41 50 54 4F P.RR-LAPTO
50 00 P.

=+
11/20-16:20:38.459702 0:D0:59:6C:9:8B -> 0:50:BA:5E:EC:25 type:0x800
len:0x3C
192.168.1.100:2474 -> 192.168.1.2:22 TCP TTL:128 TOS:0x0 ID:4506
IpLen:20 DgmLen:40 DF
A* Seq: 0x9DAEFD9C Ack: 0xF568E2FA Win: 0x3F20 TcpLen: 20

=+

11/20-16:20:38.460728 0:50:BA:5E:EC:25 -> 0:D0:59:6C:9:8B type:0x800
len:0x86
192.168.1.2:22 -> 192.168.1.100:2474 TCP TTL:64 TOS:0x10 ID:57303
IpLen:20 DgmLen:120 DF
AP Seq: 0xF568E34A Ack: 0x9DAEFD9C Win: 0x6BD0 TcpLen: 20
F9 7B 4B 96 3F C8 0A BC DF 9E EE 4F DA 27 6F B4 .{K.?......O.'o.
92 BD A7 C5 1D E4 35 AB DB BF 7B 56 B9 F8 BA A1 5...{V....
86 BB FE 6E FD 41 55 FF D0 51 04 AF 73 80 13 29 ...n.AU..Q..s..)
D7 62 67 A4 B5 0C 5F 32 30 36 81 C2 9C 31 53 AD .bg..._206...1S.
3A 65 46 EE F1 52 59 ED 57 C7 6A 85 88 5A 3E D8 :eF..RY.W.j..Z>.

=+

Snort Modes 63

11/20-16:20:38.461631 0:50:BA:5E:EC:25 -> 0:D0:59:6C:9:8B type:0x800
len:0x86
192.168.1.2:22 -> 192.168.1.100:2474 TCP TTL:64 TOS:0x10 ID:57304
IpLen:20 DgmLen:120 DF
AP Seq: 0xF568E39A Ack: 0x9DAEFD9C Win: 0x6BD0 TcpLen: 20
81 68 7B F3 7C E7 61 54 F9 6E 4C 24 C6 8B 68 63 .h{.|.aT.nL$..hc
74 A7 BE 99 5C F6 15 01 F7 EB 75 06 26 B7 FA 2C t...\.....u.&..,
81 A3 27 BD F0 4F CB AD C9 58 D2 9B C7 4F 90 8A ..'..O...X...O..
1D 15 D2 77 11 DC BC EE BF 05 20 49 BA 72 EA 1F ...w...... I.r..
12 49 14 B5 6C 6F 66 DC 26 39 84 D9 CE 09 F7 AE .I..lof.&9......

+=+

11/20-16:20:38.462524 0:50:BA:5E:EC:25 -> 0:D0:59:6C:9:8B type:0x800
len:0x86
192.168.1.2:22 -> 192.168.1.100:2474 TCP TTL:64 TOS:0x10 ID:57305
IpLen:20 DgmLen:120 DF
AP Seq: 0xF568E3EA Ack: 0x9DAEFD9C Win: 0x6BD0 TcpLen: 20
12 92 BE 7B 11 AA E9 DC 09 F9 02 8D B5 8E 08 FB ...{............
37 48 1D 1E 4B EF DF B2 19 D6 B9 26 F7 6E DF C3 7H..K......&.n..
DD DD 01 A1 93 81 0E 0B 35 4B 6B EA D3 E6 5E BA 5Kk...^.
2B 95 78 8A 3D 77 E3 F4 C8 AB 94 E5 A5 7E D7 98 +.x.=w.......~..
00 28 F0 7E 36 14 79 DF 10 B2 C6 13 F5 71 1F F1 .(.~6.y......q..

=+

2.7.1.1 Logging Snort Data in Text Format
You can log Snort data in text mode by adding -l <directory name> on the

command line. The following command logs all Snort data in /var/log/snort
directory in addition to displaying it on the console.

snort -dev -l /var/log/snort

When you go to the /var/log/snort directory, you will find multiple directo-
ries under it. Each of these directories corresponds to one host and contains multiple
files. The name of the directory is usually the same as the IP address of host. These files
contain logs for different connections and different types of network data. For example,
files containing TCP data will start with TCP. A typical name for a file containing TCP
data is TCP:2489-23. A typical file containing ICMP data may be ICMP_ECHO.
The format of data logged in these files is the same as the data displayed on the screen
when you run Snort in the network sniffer mode.

2.7.1.2 Logging Snort in Binary Format
On high-speed networks, logging data in ASCII format in many different files

may cause high overhead. Snort allows you to log all data in a binary file in tcpdump

64 Chapter 2 • Installing Snort and Getting Started

format and view it later on. In this case, snort logs all data to a single file in raw binary
form. A typical command for this type of log is :

snort -l /tmp -b

Snort will create a file in /tmp directory. A typical file name may be
snort.log.1037840339. The last part of the file name is dependent on the clock
on your machine. Each time you start Snort in this mode, a new file will be created in
the log directory. Sometimes this mode of logging data is also called a quick mode.

To view this raw binary data, you can use Snort. The -r command line switch is
used to specify a file name with Snort. The following command will display the cap-
tured data from file snort.log.1037840339.

snort -dev -r /tmp/snort.log.1037840339| more

The output of this command will show data in exactly the same way if you are
looking at it on the console in real time. You can use different switches to display differ-
ent levels of detail with this data.

You can also display a particular type of data from the log file. The following
command displays all TCP type data from the log file:

snort -dev -r / tmp/snort.log.1037840339 tcp

Similarly, ICMP and UDP types of data can also be displayed.
You can also use the tcpdump program to read files generated by Snort when log-

ging in this mode. The following command reads the Snort files and displays captured
packets in the file:

[root@conformix snort]# tcpdump -r /tmp/snort.log.1037840514
20:01:54.984286 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 4119588794
win 16960 (DF)
20:01:54.984407 192.168.1.2.ssh > 192.168.1.100.2474: P 81:161(80) ack
0 win 32016 (DF) [tos 0x10]
20:01:54.985428 192.168.1.2.ssh > 192.168.1.100.2474: P 161:241(80) ack
0 win 32016 (DF) [tos 0x10]
20:01:54.986325 192.168.1.2.ssh > 192.168.1.100.2474: P 241:321(80) ack
0 win 32016 (DF) [tos 0x10]
20:01:54.988508 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 161 win
16800 (DF)
20:01:54.988627 192.168.1.2.ssh > 192.168.1.100.2474: P 321:465(144)
ack 0 win 32016 (DF) [tos 0x10]
20:01:54.990771 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 321 win
16640 (DF)
20:01:55.117890 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 465 win
16496 (DF)
20:01:55.746665 192.168.1.1.1901 > 239.255.255.250.1900: udp 269

Snort Modes 65

20:01:55.749466 192.168.1.1.1901 > 239.255.255.250.1900: udp 325

20:01:55.751968 192.168.1.1.1901 > 239.255.255.250.1900: udp 253

20:01:55.754145 192.168.1.1.1901 > 239.255.255.250.1900: udp 245
20:01:55.756781 192.168.1.1.1901 > 239.255.255.250.1900: udp 289

20:01:55.759258 192.168.1.1.1901 > 239.255.255.250.1900: udp 265

20:01:55.761763 192.168.1.1.1901 > 239.255.255.250.1900: udp 319
20:01:55.764365 192.168.1.1.1901 > 239.255.255.250.1900: udp 317

20:01:55.767103 192.168.1.1.1901 > 239.255.255.250.1900: udp 321
20:01:55.769557 192.168.1.1.1901 > 239.255.255.250.1900: udp 313

20:01:56.336697 192.168.1.100.2474 > 192.168.1.2.ssh: P 0:80(80) ack
465 win 16496 (DF)
[root@conformix snort]#

You can use different command line options with tcpdump to manipulate the dis-
play of data. For more information about tcpdump, use the “man tcpdump” com-
mand or see Appendix A.

2.7.2 Network Intrusion Detection Mode

In intrusion detection mode, Snort does not log each captured packet as it does in
the network sniffer mode. Instead, it applies rules on all captured packets. If a packet
matches a rule, only then is it logged or an alert is generated. If a packet does not match
any rule, the packet is dropped silently and no log entry is created. When you use Snort
in intrusion detection mode, typically you provide a configuration file on the command
line. This configuration file contains Snort rules or reference to other files that contain
Snort rules. In addition to rules, the configuration file also contains information about
input and output plug-ins, which are discussed in Chapter 4. The typical name of the
Snort configuration file is snort.conf. We have previously saved snort.conf
configuration file in /opt/snort/etc directory along with other files. This was
done during the installation procedure.5 The following command starts Snort in the Net-
work Intrusion Detection (NID) mode:

snort -c /opt/snort/etc/snort.conf

When you start this command, Snort will read the configuration file /opt/
snort/etc/snort.conf and all other files included in this file. Typically these
files contain Snort rules and configuration data. After reading these files, Snort will
build its internal data structures and rule chains. All captured packets will then be
matched against these rules and appropriate action will be taken, if configured to do so.

5. If you used the RPM package to install Snort, the typical location of the Snort configuration file is
/etc/snort/snort.conf.

66 Chapter 2 • Installing Snort and Getting Started

If you modify the snort.conf file, or any other file included in this file, you have to
restart Snort for the changes to take effect.

Other command line options and switches can be used when Snort is working in
IDS mode. For example, you can log data into files as well as display data on the com-
mand line. However if Snort is being used for long-term monitoring, the more data you
log, the more disk space you need. Logging data to the console also requires some pro-
cessing power and the processing power of the host where Snort is running becomes a
consideration. The following command will log data to /var/log/snort directory
and will display it on the console screen in addition to acting as NIDS:

snort -dev -l /var/log/snort -c /etc/snort/snort.conf

However in most real-life situations, you will use -D command line switch with
Snort so that it does not log on the console but runs as a daemon.

In a typical scenario, you will also want to log Snort data into a database. Logging
data into MySQL database is discussed in Chapter 5.

2.8 Snort Alert Modes
When Snort is running in the Network Intrusion Detection (NID) mode, it generates
alerts when a captured packet matches a rule. Snort can send alerts in many modes.
These modes are configurable through the command line as well as through
snort.conf file. Common alert modes are explained in this section. To explain the
alert modes, I have used a rule that creates an alert when Snort detects an ICMP packet
with TTL 100. This rule is listed below.

alert icmp any any -> any any (msg: "Ping with TTL=100"; \
 ttl:100;)

Rules will be explained in the next chapter in detail. For this discussion, it is suffi-
cient to understand that this rule will create an alert with the text message “Ping with
TTL=100” whenever such an ICMP packet is captured. The rule does not care about
source or destination address in the packet. I have used the following command on my
Windows PC to send one ICMP echo packet with TTL=100.

C:\rrehman>ping -n 1 -i 100 192.168.1.3

Pinging 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time=3ms TTL=255

Ping statistics for 192.168.1.3:
 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

Snort Alert Modes 67

Approximate round trip times in milli-seconds:
 Minimum = 3ms, Maximum = 3ms, Average = 3ms

C:\rrehman>

The “-n 1” command line option is used to send only one ICMP packet. The
“-i 100” option is used to set the TTL value equal to 100 in the ICMP packet. For
details on the format of ICMP packet headers, refer to RFC 792 at ftp://ftp.isi.edu/in-
notes/rfc792.txt or Appendix C.

Whenever this command is executed, Snort captures the ICMP packet and creates
an alert. The amount of information logged with the alert depends on the particular
alerting mode. Now let us see how different alerting modes work on a packet.

2.8.1 Fast Mode

The fast alert mode logs the alert with following information:

• Timestamp
• Alert message (configurable through rules)
• Source and destination IP addresses
• Source and destination ports

To configure fast alert mode, you have to use “-A fast” command line option.
This alert mode causes less overhead for the system. The following command starts
Snort in fast alert mode:

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -q -A fast

The –q option used on the command line stops the initial messages and final sta-
tistical summary from being displayed on the screen. Now when you create an alert, it
will be logged in /var/log/snort/alert file. However, you can change the loca-
tion of this file using -l command line option. The alert message is similar to the fol-
lowing:

05/28-22:16:25.126150 [**] [1:0:0] Ping with TTL=100 [**]
{ICMP} 192.168.1.100 -> 192.168.1.3

This alert message shows the following information:

• Date and time the alert occurred.
• Message present in the rule that generated this alert. In this example, the

message is “Ping with TTL=100”.
• Source address which is 192.168.1.100.

68 Chapter 2 • Installing Snort and Getting Started

• Destination address which is 192.168.1.3.

• Type of packet; in the above example, type of packet is ICMP.

Note that the actual packet is not logged in this file when using this alert mode.

2.8.2 Full Mode

This is the default alert mode. It prints the alert message in addition to the packet
header. Let us start Snort with full alerting enabled with the following command:

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -q -A full

When Snort generates an alert in this mode, the message logged in /var/log/
snort/alert file is similar to the following:

[**] [1:0:0] Ping with TTL=100 [**]

05/28-22:14:37.766150 192.168.1.100 -> 192.168.1.3

ICMP TTL:100 TOS:0x0 ID:40172 IpLen:20 DgmLen:60

Type:8 Code:0 ID:768 Seq:20224 ECHO

As you can see, additional information is logged with the alert message. This
additional information shows different values in the packet header, including:

• Time to Live (TTL) value in the IP packet header. For details on TTL value,
refer to RFC 791 at ftp://ftp.isi.edu/in-notes/rfc791.txt

• The Type Of Service (TOS) value in the IP packet header. For details on TOS
value, refer to RFC 791 at at ftp://ftp.isi.edu/in-notes/rfc791.txt and Appendix C.

• Length of IP packet header shown as IpLen:20.

• Total length of IP packet shown as DgmLen:60.

• ICMP Type field. For details on ICMP type field refer to RFC 792.

• ICMP code value. For details on ICMP type field refer to RFC 792.

• IP packet ID.

• Sequence number.

• ICMP packet type which is ECHO.

2.8.3 UNIX Socket Mode

If you use “-a unsock” command line option with Snort, you can send alerts to
another program through UNIX sockets. This is useful when you want to process alerts
using a custom application with Snort. For more information on socket, use the “man
socket” command.

Snort Alert Modes 69

2.8.4 No Alert Mode

You can also completely disable Snort alerts using “-A none” command line
option. This option is very useful for high speed intrusion detection using unified log-
ging. You can disable normal logging using this option while using the unified option.
Unified output plug-in is discussed in Chapter 4.

2.8.5 Sending Alerts to Syslog

This command allows Snort to send alerts to Syslog daemon. Syslog is a system
logger daemon and it generates log files for system events. It reads its configuration file
/etc/syslog.conf where the location of these log files is configured. The usual
location of syslog files is /var/log directory. On Linux systems, usually /var/
log/messages is the main logging file. For more information, use the “man sys-
log” command. The “man syslog.conf” command shows the format of the sys-
log.conf file.

Depending on the configuration of the Syslog using /etc/syslog.conf file,
the alerts can be saved into a particular file. The following command enables Snort to
log to the Syslog daemon:

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -s

Using the default configuration on my RedHat 7.1 computer, the messages are
logged to /var/log/messages file. When you cause an alert message by sending
the special ICMP packet with TTL=100, the following line will be logged to the /var/
log/messages file.

May 28 22:21:02 snort snort[1750]: [1:0:0] Ping with TTL=100
{ICMP} 192.168.1.100 -> 192.168.1.3

Using Syslog facility will be discussed in Chapter 4 later on in this book. You will
also learn how to enable logging to Syslog using the output plug-in.

2.8.6 Sending Alerts to SNMP

One very useful feature of Snort is SNMP traps. You can configure an output
plug-in to send messages in the form of SNMP traps to a network management system.
Using this feature you can integrate your intrusion detection sensors into any central-
ized NMS like HP OpenView, OpenNMS, MRTG and so on. Snort can generate SNMP
version 2 and version 3 traps. The configuration process for SNMP traps will be dis-
cussed later on in detail.

70 Chapter 2 • Installing Snort and Getting Started

2.8.7 Sending Alerts to Windows

Snort can send alerts to Microsoft Windows machines in the form of pop-up windows. These
pop-up windows are controlled by Windows Messenger Service. Windows Messenger Service
must be running on your Windows machine for pop-up windows to work. You can go to Control
Panel and start the Services applet to find out if Windows Messenger Service is running. The
Services applet is found in the Administrative Tools menu on your Windows system. Depending
on your version of Microsoft Windows, it may be found in Control Panel or some other place.

The SAMBA client package must be installed on your UNIX machine. SAMBA is an
open source software suite that allows UNIX file and printer sharing with Microsoft Windows
machines. SAMBA software runs on UNIX platforms. It can work with any other operating sys-
tem that understands Common Internet File System (CIFS) or Server Message Block (SMB)
protocol. More information about SAMBA is available from http://www.samba.org.

The Snort alert mechanism uses smbclient program on the UNIX machine to connect to
the Windows machines and send the alerts. Make sure that the SAMBA client is working prop-
erly before trying to use this service. SAMBA operations are dependent upon its configuration
file /etc/samba/smb.conf on a RedHat system. This file may be located at a different place on
other UNIX systems. Although detailed discussion on SAMBA is beyond the scope of this book,
a sample SAMBA configuration file is listed below. This file can be used to jump start SAMBA.
The file creates a workgroup REHMAN which you can view from “Network Neighborhood”
part of your Windows machines.

2.8.7.1 Sample Samba Configuration File
A sample /etc/samba/smb.conf file is as follows:

[global]
 workgroup = REHMAN
 server string = REHMAN file server
 log file = /var/log/samba/log.%m
 max log size = 50
 security = user
 encrypt passwords = yes
 socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
 dns proxy = no
 domain logons = no
 unix password sync = no
 map to guest = never
 password level = 0
 null passwords = no
 os level = 0
 preferred master = yes
 domain master = yes
 wins support = yes
 dead time = 0

Running Snort in Stealth Mode 71

 debug level = 0
 load printers = yes
[homes]
 comment = Home Directories
 browseable = yes
 writable = yes
 available = yes
 public = yes
 only user = no
[htmldir]
 comment = html stuff
 path = /home/httpd/html
 public = yes
 writable = yes
 printable = no
 write list = rehman
[virtualhosting]
 comment = html stuff
 path = /usr/virt_web
 public = yes
 writable = yes
 printable = no
 write list = rehman
[printers]
[netlogon]
 available = no

More information about SMB alerts will be presented in later chapters. Note that
you should compile Snort with --with-smbalerts option in the configure script if
you want to use this option. Without this option in the configure script, SAMBA ser-
vices can’t be used with Snort.

2.9 Running Snort in Stealth Mode
Sometimes you may want to run Snort in stealth mode. In stealth mode, other hosts are
not able to detect the presence of the Snort machine. In other words, the Snort machine
is not visible to intruders or other people. There are multiple ways to run Snort in stealth
mode. One of these methods is to run Snort on a network interface where no IP address
is assigned. Running Snort on a network interface without an IP address is feasible in
the following two cases:

1. A stand-alone Snort sensor with only one network adapter.
2. A Snort sensor with two network adapters: one to access the sensor from an

isolated network and the other one connected to the public network and running

72 Chapter 2 • Installing Snort and Getting Started

in stealth mode. This arrangement is shown in Figure 2-3 where network inter-
face eth1 is connected to a private isolated network and eth0 is connected to
a public network.

When you want to access the sensor itself, you go through network interface
eth1 which has an IP address configured to it. The management workstation shown in
the figure may be used to connect to the sensor either to collect data or to log informa-
tion to a centralized database. If many sensors are present in an organization, all of
these are connected to this isolated network so that they can log information to the cen-
tral database running on the management workstation or to some other database server
connected to this isolated network.

No IP address is configured on network interface eth0 which has connectivity to
the Internet. Interface eth0 remains in stealth mode but can still listen to the network
traffic from this side of the network.

Before starting Snort on eth0, you have to bring it up. On Linux systems, you
can do it by using the following command:

ifconfig eth0 up

The command makes the interface usable without allocating an IP address. After
that, you can start Snort on this interface by using “-i eth0” command line option as
follows:

snort -c /opt/snort/etc/snort.conf -i eth0 -D

Figure 2-3 Running Snort in stealth mode on a system with two network adapters.

References 73

2.10References

1. Snort web site at http://www.snort.org
2. SNMP information at http://www.simpletimes.com
3. Winpcap Library at http://winpcap.polito.it/
4. Apache web server at http://www.apache.org
5. Argus Network Security Services Inc. at http://www.argusnetsec.com
6. Libpcap is available from http://www-nrg.ee.lbl.gov/
7. Libnet at http://www.packetfactory.net
8. RFC 792 at ftp://ftp.isi.edu/in-notes/rfc792.txt
9. RFC 791 at at ftp://ftp.isi.edu/in-notes/rfc791.txt

10. SAMBA at http://www.samba.org

75

C H A P T E R 3

Working with
Snort Rules

ike viruses, most intruder activity has some sort of signature. Infor-
mation about these signatures is used to create Snort rules. As men-

tioned in Chapter 1, you can use honey pots to find out what intruders are
doing and information about their tools and techniques. In addition to
that, there are databases of known vulnerabilities that intruders want to
exploit. These known attacks are also used as signatures to find out if
someone is trying to exploit them. These signatures may be present in the
header parts of a packet or in the payload. Snort’s detection system is
based on rules. These rules in turn are based on intruder signatures. Snort
rules can be used to check various parts of a data packet. Snort 1.x ver-
sions can analyze layer 3 and 4 headers but are not able to analyze appli-
cation layer protocols. Upcoming Snort version 2 is expected to add
support of application layer headers as well. Rules are applied in an
orderly fashion to all packets depending on their types.

A rule may be used to generate an alert message, log a message, or, in
terms of Snort, pass the data packet, i.e., drop it silently. The word pass
here is not equivalent to the traditional meaning of pass as used in fire-
walls and routers. In firewalls and routers, pass and drop are opposite to
each other. Snort rules are written in an easy to understand syntax. Most
of the rules are written in a single line. However you can also extend rules
to multiple lines by using a backslash character at the end of lines. Rules

L

76 Chapter 3 • Working with Snort Rules

are usually placed in a configuration file, typically snort.conf. You
can also use multiple files by including them in a main configuration file.

This chapter provides information about different types of rules as well as
the basic structure of a rule. You will find many examples of common
rules for intrusion detection activity at the end of this chapter. After read-
ing this chapter, along with the two preceding chapters, you should have
enough information to set up Snort as a basic intrusion detection system.

3.1 TCP/IP Network Layers
Before you move to writing rules, let us have a brief discussion about TCP/IP layers.
This is important because Snort rules are applied on different protocols in these layers.

TCP/IP is a five layer protocol. These layers interact with each other to make the
communication process work. The names of these layers are:

1. The physical layer.
2. The data link layer. In some literature this is also called the network interface

layer. The physical and data link layers consist of physical media, the network
interface adapter, and the driver for the network interface adapter. Ethernet
addresses are assigned in the data link layer.

3. The network layer, which is actually IP (Internet Protocol) layer. This layer is
responsible for point-to-point data communication and data integrity. All hosts
on this layer are distinguished by IP addresses. In addition to IP protocol,
ICMP (Internet Control Message Protocol) is another major protocol in this
layer. Information about IP protocol is available in RFC 791 available at http://
www.rfc-editor.org/rfc/rfc791.txt. Information about ICMP protocol is avail-
able at http://www.rfc-editor.org/rfc/rfc792.txt.

4. The transport layer, which is actually TCP/UDP layer in the TCP/IP protocol.
TCP (Transmission Control Protocol) is used for connection-oriented and reli-
able data transfer from source to destination. UDP (User Datagram Protocol),
on the other hand, is used for connectionless data transfer. There is no assur-
ance that data sent through UDP protocol will actually reach its destination.
UDP is used where data loss can be tolerated. Information about UDP protocol
is available in RFC 768 at http://www.rfc-editor.org/rfc/rfc768.txt. Information
about TCP protocol is available in RFC 793 at http://www.rfc-editor.org/rfc/
rfc793.txt.

The First Bad Rule 77

5. The application layer consists of applications to provide user interface to the
network. Examples of network applications are Telnet, Web browsers, and FTP
clients. These applications usually have their own application layer protocol for
data communication.

Snort rules operate on network (IP) layer and transport (TCP/UDP) layer proto-
cols. However there are methods to detect anomalies in data link layer and application
layer protocols. The second part of each Snort rule shows the protocol and you will
learn shortly how to write these rules.

3.2 The First Bad Rule
Here is the first (very) bad rule. In fact, this may be the worst rule ever written, but it
does a very good job of testing if Snort is working well and is able to generate alerts.

alert ip any any -> any any (msg: "IP Packet detected";)

You can use this rule at the end of the snort.conf file the first time you install
Snort. The rule will generate an alert message for every captured IP packet. It will soon
fill up your disk space if you leave it there! This rule is bad because it does not convey
any information. What is the point of using a rule on a permanent basis that tells you
nothing other than the fact that Snort is working? This should be your first test to make
sure that Snort is installed properly. In the next section, you will find information about
the different parts of a Snort rule. However for the sake of completeness, the following
is a brief explanation of different words used in this rule:

• The word “alert” shows that this rule will generate an alert message when the
criteria are met for a captured packet. The criteria are defined by the words that
follow.

• The “ip” part shows that this rule will be applied on all IP packets.
• The first “any” is used for source IP address and shows that the rule will be

applied to all packets.
• The second “any” is used for the port number. Since port numbers are irrelevant

at the IP layer, the rule will be applied to all packets.
• The -> sign shows the direction of the packet.
• The third “any” is used for destination IP address and shows that the rule will

be applied to all packets irrespective of destination IP address.
• The fourth “any” is used for destination port. Again it is irrelevant because this

rule is for IP packets and port numbers are irrelevant.

78 Chapter 3 • Working with Snort Rules

• The last part is the rule options and contains a message that will be logged
along with the alert.

The next rule isn’t quite as bad. It generates alerts for all captured ICMP packets.
Again, this rule is useful to find out if Snort is working.

alert icmp any any -> any any (msg: "ICMP Packet found";)

If you want to test the Snort machine, send a ping packet (which is basically ICMP
ECHO REQUEST packet on UNIX machines). Again, you can use this rule when you
install Snort to make sure that it is working well. As an example, send an ICMP packet to
your gateway address or some other host on the network using the following command:

ping 192.168.2.1

Note that 192.168.2.1 is the IP address of gateway/router or some other host on
the same network where the Snort machine is present. This command should be exe-
cuted on the machine where you installed Snort. The command can be used both on
UNIX and Microsoft Windows machines.

T I P I use a slightly modified version of this rule to continuously monitor multiple
Snort sensors just to make sure everybody is up and running. This rule is as follows:

alert icmp 192.168.1.4 any -> 192.168.1.1 any (msg: "HEARTBEAT";)

My Snort sensor IP address is 192.168.1.4 and gateway address is 192.168.1.1. I
run the following command through cron daemon on the Linux machine to trigger
this rule every 10 minutes.

ping -n 1 192.168.1.1

The command sends exactly one ICMP packet to the gateway machine. This packet
causes an alert entry to be created. If there is no alert every 10 minutes, there is
something wrong with the sensor.

3.3 CIDR

Classless Inter-Domain Routing or CIDR is defined in RFC 1519. It was intended to
make better use of available Internet addresses by eliminating different classes (like
class A and class B). With the CIDR, you can define any number of bits in the netmask
field, which was not possible with class-based networking where the number of bits
was fixed. Using CIDR, network addresses are written using the number of bits in the
netmask at the end of the IP address. For example, 192.168.1.0/24 defines a network
with network address 192.168.1.0 with 24 bits in the netmask. A netmask with 24 bits is

Structure of a Rule 79

equal to 255.255.255.0. An individual host can be written using all of the netmask bits,
i.e., 32. The following rule shows that only those packets that go to a single host with IP
address192.168.2.113 will generate an alert:

alert icmp any any -> 192.168.1.113/32 any \
 (msg: "Ping with TTL=100"; ttl:100;)

All addresses in Snort are written using the CIDR notation, which makes it very
convenient to monitor any subset of hosts.

3.4 Structure of a Rule
Now that you have seen some rules which are not-so-good but helpful in a way, let us
see the structure of a Snort rule. All Snort rules have two logical parts: rule header and
rule options. This is shown in Figure 3-1.

The rule header contains information about what action a rule takes. It also con-
tains criteria for matching a rule against data packets. The options part usually contains
an alert message and information about which part of the packet should be used to gen-
erate the alert message. The options part contains additional criteria for matching a rule
against data packets. A rule may detect one type or multiple types of intrusion activity.
Intelligent rules should be able to apply to multiple intrusion signatures.

The general structure of a Snort rule header is shown in Figure 3-2.

The action part of the rule determines the type of action taken when criteria are
met and a rule is exactly matched against a data packet. Typical actions are generating
an alert or log message or invoking another rule. You will learn more about actions later
in this chapter.

Figure 3-1 Basic structure of Snort rules.

Figure 3-2 Structure of Snort rule header.

80 Chapter 3 • Working with Snort Rules

The protocol part is used to apply the rule on packets for a particular protocol
only. This is the first criterion mentioned in the rule. Some examples of protocols used
are IP, ICMP, UDP etc.

The address parts define source and destination addresses. Addresses may be a
single host, multiple hosts or network addresses. You can also use these parts to exclude
some addresses from a complete network. More about addresses will be discussed later.
Note that there are two address fields in the rule. Source and destination addresses are
determined based on direction field. As an example, if the direction field is “->”, the
Address on the left side is source and the Address on the right side is destination.

In case of TCP or UDP protocol, the port parts determine the source and destina-
tion ports of a packet on which the rule is applied. In case of network layer protocols
like IP and ICMP, port numbers have no significance.

The direction part of the rule actually determines which address and port number
is used as source and which as destination.

For example, consider the following rule that generates an alert message whenever
it detects an ICMP1 ping packet (ICMP ECHO REQUEST) with TTL equal to 100, as
you have seen in Chapter 2.

alert icmp any any -> any any (msg: "Ping with TTL=100"; \
 ttl: 100;)

The part of the rule before the starting parenthesis is called the rule header. The
part of the rule that is enclosed by the parentheses is the options part. The header con-
tains the following parts, in order:

• A rule action. In this rule the action is “alert”, which means that an alert will be
generated when conditions are met. Remember that packets are logged by
default when an alert is generated. Depending on the action field, the rule
options part may contain additional criteria for the rules.

• Protocol. In this rule the protocol is ICMP, which means that the rule will be
applied only on ICMP-type packets. In the Snort detection engine, if the
protocol of a packet is not ICMP, the rest of the rule is not considered in order
to save CPU time. The protocol part plays an important role when you want to
apply Snort rules only to packets of a particular type.

1. ICMP or Internet Control Message Protocol is defined in RFC 792. ICMP packets are used to con-
vey different types of information in the network. ICMP ECHO REQUEST is one type of ICMP
packet. There are many other types of ICMP packets as defined in the RFC 792. The references at
the end of this chapter contains a URL to download the RFC document.

Rule Headers 81

• Source address and source port. In this example both of them are set to “any”,
which means that the rule will be applied on all packets coming from any
source. Of course port numbers have no relevance to ICMP packets. Port
numbers are relevant only when protocol is either TCP or UDP.

• Direction. In this case the direction is set from left to right using the -> symbol.
This shows that the address and port number on the left hand side of the symbol
are source and those on the right hand side are destination. It also means that
the rule will be applied on packets traveling from source to destination. You can
also use a <- symbol to reverse the meaning of source and destination address
of the packet. Note that a symbol <> can also be used to apply the rule on
packets going in either direction.

• Destination address and port address. In this example both are set to “any”,
meaning the rule will be applied to all packets irrespective of their destination
address. The direction in this rule does not play any role because the rule is
applied to all ICMP packets moving in either direction, due to the use of the
keyword “any” in both source and destination address parts.

The options part enclosed in parentheses shows that an alert message will be gen-
erated containing the text string “Ping with TTL=100” whenever the condition of
TTL=100 is met. Note that TTL or Time To Live is a field in the IP packet header. Refer
to RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt or Appendix C for information
on IP packet headers.

3.5 Rule Headers
As mentioned earlier, a rule header consists of the section of the rule before starting
parentheses and has many parts. Let us take a detailed look at different parts used in the
rule header, starting with rule actions.

3.5.1 Rule Actions

The action is the first part of a Snort rule. It shows what action will be taken when
rule conditions are met. An action is taken only when all of the conditions mentioned in
a rule are true. There are five predefined actions. However, you can also define your
own actions as needed. As a precaution, keep in mind that Snort versions 1.x and 2.x
apply rules in different ways. In Snort 1.x, if multiple rules match a given packet, only
the first one is applied. After applying the first rule, no further action is taken on the
packet. However in Snort version 2, all rules are applied before generating an alert mes-
sage. The most severe alert message is then generated.

82 Chapter 3 • Working with Snort Rules

3.5.1.1 Pass
This action tells Snort to ignore the packet. This action plays an important role in

speeding up Snort operation in cases where you don’t want to apply checks on certain
packets. For example, if you have a vulnerability assessment host on your own network
that you use to find possible security holes in your network, you may want Snort to
ignore any attacks from that host. The pass rule plays an important part in such a case.

3.5.1.2 Log
The log action is used to log a packet. Packets can be logged in different ways, as

discussed later in this book. For example, a message can be logged to log files or in a
database. Packets can be logged with different levels of detail depending on the com-
mand line arguments and configuration file. To find available command line arguments
with your version of Snort, use “snort -?” command.

3.5.1.3 Alert
The alert action is used to send an alert message when rule conditions are true for

a particular packet. An alert can be sent in multiple ways. For example, you can send an
alert to a file or to a console. The functional difference between Log and Alert actions is
that Alert actions send an alert message and then log the packet. The Log action only
logs the packet.

3.5.1.4 Activate
The activate action is used to create an alert and then to activate another rule for

checking more conditions. Dynamic rules, as explained next, are used for this purpose.
The activate action is used when you need further testing of a captured packet.

3.5.1.5 Dynamic
Dynamic action rules are invoked by other rules using the “activate” action. In

normal circumstances, they are not applied on a packet. A dynamic rule can be acti-
vated only by an “activate” action defined in another role.

3.5.1.6 User Defined Actions
In addition to these actions, you can define your own actions. These rule actions

can be used for different purposes, such as:

• Sending messages to syslog. Syslog is system logger daemon and creates log file
in /var/log directory. Location of these files can be changed using /etc/
syslog.conf file. For more information, use “man syslog” and “man
syslog.conf” commands on a UNIX system. Syslog may be compared to
the event logger on Microsoft Windows systems.

Rule Headers 83

• Sending SNMP traps. SNMP traps are sent to a network management system
like HP OpenView or Open NMS at http://www.opennms.org.

• Taking multiple actions on a packet. As you have seen earlier in the structure of
Snort rules, a rule only takes one action. User defined rules can be used to take
multiple actions. For example, a user defined rule can be used to send an SNMP
trap as well as to log the alert data to the syslog daemon.

• Logging data to XML files.

Logging messages into a database. Snort is able to log messages to MySQL, Post-
gress SQL, Oracle and Microsoft SQL server.

These new action types are defined in the configuration file snort.conf. A
new action is defined in the following general structure:

ruletype action_name
{
 action definition
}

The ruletype keyword is followed by the action name. Two braces enclose the
actual definition of the action, just like a function in C programming. For example, an
action named smb_db_alert that is used to send SMB pop-up window alert mes-
sages to hosts listed in workstation.list file and to MySQL database named
“snort” is defined below:

ruletype smb_db_alert
{
 type alert
 output alert_smb: workstation.list
 output database: log, mysql, user=rr password=rr \
 dbname=snort host=localhost
}

Theses types of rules will be discussed in the next chapter in detail. Usually they
are related to configuration of output plug-ins.

3.5.2 Protocols

Protocol is the second part of a Snort rule. The protocol part of a Snort rule shows
on which type of packet the rule will be applied. Currently Snort understands the fol-
lowing protocols:

• IP
• ICMP

84 Chapter 3 • Working with Snort Rules

• TCP

• UDP

If the protocol is IP, Snort checks the link layer header to determine the packet
type. If any other type of protocol is used, Snort uses the IP header to determine the pro-
tocol type. Different packet headers are discussed in Appendix C.

The protocols only play a role in specifying criteria in the header part of the rule.
The options part of the rule can have additional criteria unrelated to the specified proto-
col. For example, consider the following rule where the protocol is ICMP.

alert icmp any any -> any any (msg: "Ping with TTL=100"; \

 ttl: 100;)

The options part checks the TTL (Time To Live) value, which is not part of the
ICMP header. TTL is part of IP header instead. This means that the options part can
check parameters in other protocol fields as well. Header fields for common protocols
and their explanation is found in Appendix C.

3.5.3 Address

There are two address parts in a Snort rule. These addresses are used to check the
source from which the packet originated and the destination of the packet. The address
may be a single IP address or a network address. You can use any keyword to apply a
rule on all addresses. The address is followed by a slash character and number of bits in
the netmask. For example, an address 192.168.2.0/24 represents C class network
192.168.2.0 with 24 bits in the network mask. A network mask with 24 bits is
255.255.255.0. Keep the following in mind about number of bits in the netmask:

• If the netmask consists of 24 bits, it is a C class network.

• If the netmask consists of 16 bits, it is a B class network.

• If the netmask consists of 8 bits, it is an A class network.

• For a single host, use 32 bits in the netmask field.

You can also use any number of bits in the address part allowed by Classless Inter-
Domain Routing or CIDR. Refer to RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt
for structure of IP addresses and netmasks and to RFC 1519 at http://www.rfc-edi-
tor.org/rfc/rfc1519.txt for more information on CIDR.

As mentioned earlier, there are two address fields in the Snort rule. One of them is
the source address and the other one is the destination address. The direction part of the

Rule Headers 85

rule determines which address is source and which one is destination. Refer to the expla-
nation of the direction part to find more information about how this selection is made.

Following are some examples of how addresses are mentioned in Snort rules:

• An address 192.168.1.3/32 defines a single host with IP address 192.168.1.3.
• An address 192.168.1.0/24 defines a class C network with addresses ranging

from 192.168.1.0 to 192.168.1.255. There are 24 bits in the netmask, which is
equal to 255.255.255.0.

• An address 152.168.0.0/16 defines a class B network with addresses ranging
from 152.168.0.0 to 152.168.255.255. There are 16 bits in the netmask, which
is equal to 255.255.0.0.

• An address 10.0.0.0/8 defines a class A network with addresses ranging from
10.0.0.0 to 10.255.255.255. There are 8 bits in the netmask, which is equal to
255.0.0.0.

• An address 192.168.1.16/28 defines an address range of 192.168.1.16 to
192.168.1.31. There are 28 bits in the netmask field, which is equal to
255.255.255.240, and the network consists of 16 addresses. You can place only
14 hosts in this type of network because two of the total 16 addresses are used
up in defining the network address and the broadcast address. Note that the first
address in each network is always the network address and the last address is
the broadcast address. For this network 192.168.1.16 is the network address
and 192.168.1.31 is the broadcast address.

For example, if you want to generate alerts for all TCP packets with
TTL=100 going to web server 192.168.1.10 at port 80 from any source, you
can use the following rule:

alert tcp any any -> 192.168.1.10/32 80 (msg: "TTL=100"; \

 ttl: 100;)

This rule is just an example to provide information about how IP addresses are
used in Snort rules.

3.5.3.1 Address Exclusion
Snort provides a mechanism to exclude addresses by the use of the negation sym-

bol !, an exclamation point. This symbol is used with the address to direct Snort not to
test packets coming from or going to that address. For example, the following rule is
applied to all packets except those that originate from class C network 192.168.2.0.

86 Chapter 3 • Working with Snort Rules

alert icmp ![192.168.2.0/24] any -> any any \

 (msg: "Ping with TTL=100"; ttl: 100;)

This rule is useful, for instance, when you want to test packets that don’t originate
from your home network (which means you trust everyone in your home network!).

3.5.3.2 Address Lists

You can also specify list of addresses in a Snort rule. For example, if your home
network consists of two C class IP networks 192.168.2.0 and 192.168.8.0 and you want
to apply the above rule to all addresses but hosts in these two, you can use the following
modified rule where the two addresses are separated by a comma.

alert icmp ![192.168.2.0/24,192.168.8.0/24] any -> any \

 any (msg: "Ping with TTL=100"; ttl: 100;)

Note that a square bracket is used with the negation symbol. You don’t need to use
brackets if you are not using the negation symbol.

3.5.4 Port Number

The port number is used to apply a rule on packets that originate from or go to a
particular port or a range of ports. For example, you can use source port number 23 to
apply a rule to those packets that originate from a Telnet server. You can use the key-
word any to apply the rule on all packets irrespective of the port number. Port number is
meaningful only for TCP and UDP protocols. If you have selected IP or ICMP as the
protocol in the rule, port number does not play any role. The following rule is applied to
all packets that originate from a Telnet server in 192.168.2.0/24, which is a class C net-
work and contains the word “confidential”:

alert tcp 192.168.2.0/24 23 -> any any \

 (content: "confidential"; msg: "Detected confidential";)

The same rule can be applied to traffic either going to or originating from any Tel-
net server in the network by modifying the direction to either side as shown below:

alert tcp 192.168.2.0/24 23 <> any any \

 (content: "confidential"; msg: "Detected confidential";)

Port numbers are useful when you want to apply a rule only for a particular type of
data packet. For example, if a vulnerability is related to only a HTTP (Hyper Text
Transfer Protocol) web server, you can use port 80 in the rule to detect anybody trying
to exploit it. This way Snort will apply that rule only to web server traffic and not to any
other TCP packets. Writing good rules always improves the performance of IDS.

Rule Headers 87

3.5.4.1 Port Ranges
You can also use a range of ports instead of only one port in the port field. Use a

colon to separate starting and ending port numbers. For example, the following rule will
create an alert for all UDP traffic coming from ports 1024 to 2048 from all hosts.

alert udp any 1024:2048 -> any any (msg: “UDP ports”;)

3.5.4.2 Upper and Lower Boundaries
While listing port numbers, you can also use only the starting port number or the

ending port number in the range. For example, a range specified as :1024 includes all
port numbers up to and including port 1024. A port range specified as 1000: will
include all ports numbers including and above port 1000.

3.5.4.3 Negation Symbol
As with addresses, you can also use the negation symbol with port numbers to

exclude a port or a range of ports from the scope of the Snort rule. The following rule
logs all UDP traffic except for source port number 53.

log udp any !53 -> any any log udp

You can’t use comma character in the port filed to specify multiple ports. For
example, specifying 53,54 is not allowed. However you can use 53:54 to specify a port
range.

3.5.4.4 Well-Known Port Numbers
Well-known port numbers are used for commonly used applications. Some of

these port numbers and their applications are listed in Table 3-1.

Table 3-1 Well-Known Port Numbers

Port Number Description

20 FTP data

21 FTP

22 SSH or Secure shell

23 Telnet

25 SMTP, used for e-mail server like Sendmail

37 NTP (Network Time Protocol) used for synchronizing time on network hosts

53 DNS server

67 BootP/DHCP client

68 BootP/DHCP server

69 TFTP

80 HTTP, used for all web servers

88 Chapter 3 • Working with Snort Rules

You can also look into /etc/services file on the UNIX platform to see more
port numbers. Refer to RFC 1700 for a detailed list at http://www.rfc-editor.org/rfc/
rfc1700.txt. The Internet Corporation for Assigned Names and Numbers (ICANN) now
keeps track of all port numbers and names. You can find more information at http://
www.icann.org.

3.5.5 Direction

The direction field determines the source and destination addresses and port num-
bers in a rule. The following rules apply to the direction field:

• A -> symbol shows that address and port numbers on the left hand side of the
direction field are the source of the packet while the address and port number
on the right hand side of the field are the destination.

• A <- symbol in the direction field shows that the packet is traveling from the
address and port number on the right hand side of the symbol to the address and
port number on the left hand side.

• A <> symbol shows that the rule will be applied to packets traveling on either
direction. This symbol is useful when you want to monitor data packets for
both client and server. For example, using this symbol, you can monitor all
traffic coming from and going to a POP or Telnet server.

3.6 Rule Options
Rule options follow the rule header and are enclosed inside a pair of parentheses. There
may be one option or many and the options are separated with a semicolon. If you use
multiple options, these options form a logical AND. The action in the rule header is
invoked only when all criteria in the options are true. You have already used options like
msg and ttl in previous rule examples. All options are defined by keywords. Some rule
options also contain arguments. In general, an option may have two parts: a keyword

110 POP3, used for e-mail clients like Microsoft Outlook

161 SNMP

162 SNMP traps

443 HTTPS or Secure HTTP

514 Syslog

3306 MySQL

Table 3-1 Well-Known Port Numbers (continued)

Port Number Description

Rule Options 89

and an argument. Arguments are separated from the option keyword by a colon. Con-
sider the following rule options that you have already seen:

msg: "Detected confidential";

In this option msg is the keyword and “Detected confidential” is the argument to
this keyword.

The remainder of this section describes keywords used in the options part of Snort
rules.

3.6.1 The ack Keyword

The TCP header contains an Acknowledgement Number field which is 32 bits
long. The field shows the next sequence number the sender of the TCP packet is expect-
ing to receive. This field is significant only when the ACK flag in the TCP header is set.
Refer to Appendix C and RFC 793 for more information about the TCP header.

Tools like nmap (http://www.nmap.org) use this feature of the TCP header to ping
a machine. For example, among other techniques used by nmap, it can send a TCP
packet to port 80 with ACK flag set and sequence number 0. Since this packet is not
acceptable by the receiving side according to TCP rules, it sends back a RST packet.
When nmap receives this RST packet, it learns that the host is alive. This method works
on hosts that don’t respond to ICMP ECHO REQUEST ping packets.

To detect this type of TCP ping, you can have a rule like the following that sends
an alert message:

alert tcp any any -> 192.168.1.0/24 any (flags: A; \
 ack: 0; msg: "TCP ping detected";)

This rule shows that an alert message will be generated when you receive a TCP
packet with the A flag set and the acknowledgement contains a value of 0. Other TCP
flags are listed in Table 3-2. The destination of this packet must be a host in network
192.168.1.0/24. You can use any value with the ACK keyword in a rule, however it is
added to Snort only to detect this type of attack. Generally when the A flag is set, the
ACK value is not zero.

3.6.2 The classtype Keyword

Rules can be assigned classifications and priority numbers to group and distin-
guish them. To fully understand the classtype keyword, first look at the file classi-
fication.config which is included in the snort.conf file using the include
keyword. Each line in the classification.config file has the following syntax:

config classification: name,description,priority

90 Chapter 3 • Working with Snort Rules

The name is a name used for the classification. The name is used with the
classtype keyword in Snort rules. The description is a short description of the class
type. Priority is a number that shows the default priority of the classification, which can
be modified using a priority keyword inside the rule options. You can also place these
lines in snort.conf file as well. An example of this configuration parameter is as
follows:

config classification: DoS,Denial of Service Attack,2

In the above line the classification is DoS and the priority is 2. In Chapter 6, you
will see that classifications are used in ACID,2 which is a web-based tool to analyze
Snort alert data. Now let us use this classification in a rule. The following rule uses
default priority with the classification DoS:

alert udp any any -> 192.168.1.0/24 6838 (msg:"DoS"; \
 content: "server"; classtype:DoS;)

The following is the same rule but we override the default priority used for the
classification.

alert udp any any -> 192.168.1.0/24 6838 (msg:"DoS"; \
 content: "server"; classtype:DoS; priority:1)

Using classifications and priorities for rules and alerts, you can distinguish
between high- and low-risk alerts. This feature is very useful when you want to escalate
high-risk alerts or want to pay attention to them first.

N O T E Low priority numbers show high priority alerts.

If you look at the ACID browser window, as discussed in Chapter 6, you will see
the classification screens as shown in Figure 3-3. The second column in the middle part
of the screen displays different classifications for captured data.

Other tools also use the classification keyword to prioritize intrusion detection
data. A typical classification.config file is shown below. This file is distrib-
uted with the Snort 1.9.0. You can add your own classifications to this file and use them
in your own rules.

2. ACID stands for Analysis Control for Intrusion Detection. It provides a web-based user interface to
analyze data generated by Snort.

Rule Options 91

$Id: classification.config,v 1.10 2002/08/11 23:37:18 cazz Exp $

The following includes information for prioritizing rules

Each classification includes a shortname, a description, and a
default

priority for that classification.

Figure 3-3 Use of the classification keyword in displaying Snort alerts inside ACID window.

92 Chapter 3 • Working with Snort Rules

#
This allows alerts to be classified and prioritized. You can specify
what priority each classification has. Any rule can override the

default
priority for that rule.
#
Here are a few example rules:

alert TCP any any -> any 80 (msg: "EXPLOIT ntpdx overflow";
dsize: > 128; classtype:attempted-admin; priority:10;
#
alert TCP any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon;)
#
The first rule will set its type to "attempted-admin" and override
the default priority for that type to 10.
#
The second rule set its type to "attempted-recon" and set its
priority to the default for that type.

#
config classification:shortname,short description,priority
#

config classification: not-suspicious,Not Suspicious Traffic,3
config classification: unknown,Unknown Traffic,3
config classification: bad-unknown,Potentially Bad Traffic, 2
config classification: attempted-recon,Attempted Information Leak,2
config classification: successful-recon-limited,Information Leak,2
config classification: successful-recon-largescale,Large Scale

Information Leak,2
config classification: attempted-dos,Attempted Denial of Service,2
config classification: successful-dos,Denial of Service,2
config classification: attempted-user,Attempted User Privilege Gain,1
config classification: unsuccessful-user,Unsuccessful User Privilege

Gain,1
config classification: successful-user,Successful User Privilege Gain,1
config classification: attempted-admin,Attempted Administrator

Privilege Gain,1
config classification: successful-admin,Successful Administrator

Privilege Gain,1

NEW CLASSIFICATIONS
config classification: rpc-portmap-decode,Decode of an RPC Query,2
config classification: shellcode-detect,Executable code was detected,1

Rule Options 93

config classification: string-detect,A suspicious string was detected,3
config classification: suspicious-filename-detect,A suspicious filename

was detected,2
config classification: suspicious-login,An attempted login using a

suspicious username was detected,2
config classification: system-call-detect,A system call was detected,2
config classification: tcp-connection,A TCP connection was detected,4
config classification: trojan-activity,A Network Trojan was detected, 1
config classification: unusual-client-port-connection,A client was

using an unusual port,2
config classification: network-scan,Detection of a Network Scan,3
config classification: denial-of-service,Detection of a Denial of

Service Attack,2
config classification: non-standard-protocol,Detection of a non-

standard protocol or event,2
config classification: protocol-command-decode,Generic Protocol Command

Decode,3
config classification: web-application-activity,access to a potentially

vulnerable web application,2
config classification: web-application-attack,Web Application Attack,1
config classification: misc-activity,Misc activity,3
config classification: misc-attack,Misc Attack,2
config classification: icmp-event,Generic ICMP event,3
config classification: kickass-porn,SCORE! Get the lotion!,1
config classification: policy-violation,Potential Corporate Privacy

Violation,1
config classification: default-login-attempt,Attempt to login by a

default username and password,2

3.6.3 The content Keyword

One important feature of Snort is its ability to find a data pattern inside a packet.
The pattern may be presented in the form of an ASCII string or as binary data in the
form of hexadecimal characters. Like viruses, intruders also have signatures and the
content keyword is used to find these signatures in the packet. Since Snort version 1.x
does not support application layer protocols, this keyword, in conjunction with the off-
set keyword, can also be used to look into the application layer header.

The following rule detects a pattern “GET” in the data part of all TCP packets that
are leaving 192.168.1.0 network and going to an address that is not part of that network.
The GET keyword is used in many HTTP related attacks; however, this rule is only
using it to help you understand how the content keyword works.

alert tcp 192.168.1.0/24 any -> ![192.168.1.0/24] any \
 (content: "GET"; msg: "GET matched";)

94 Chapter 3 • Working with Snort Rules

The following rule does the same thing but the pattern is listed in hexadecimal.

alert tcp 192.168.1.0/24 any -> ![192.168.1.0/24] any \
 (content: "|47 45 54|"; msg: "GET matched";)

Hexadecimal number 47 is equal to ASCII character G, 45 is equal to E, and 54
is equal to T. You can also match both ASCII strings and binary patterns in hexadeci-
mal form inside one rule. Just enclose the hexadecimal characters inside a pair of bar
symbols: ||.

When using the content keyword, keep the following in mind:

• Content matching is a computationally expensive process and you should be
careful of using too many rules for content matching.

• If you provide content as an ASCII string, you should escape the double quote,
colon and bar symbols.

• You can use multiple content keywords in one rule to find multiple signatures
in the data packet.

• Content matching is case sensitive.

There are three other keywords that are used with the content keyword. These key-
words add additional criteria while finding a pattern inside a packet. These are:

• The offset keyword
• The depth keyword
• The nocase keyword

These keywords are discussed later in this chapter. The first two keywords are
used to confine the search within a certain range of the data packet. The nocase key-
word is used to make the search case-insensitive.

3.6.4 The offset Keyword

The offset keyword is used in combination with the content keyword. Using this
keyword, you can start your search at a certain offset from the start of the data part of
the packet. Use a number as argument to this keyword. The following rule starts search-
ing for the word “HTTP” after 4 bytes from the start of the data.

alert tcp 192.168.1.0/24 any -> any any \
 (content: "HTTP"; offset: 4; msg: "HTTP matched";)

You can use the depth keyword to define the point after which Snort should stop
searching the pattern in the data packets.

Rule Options 95

3.6.5 The depth Keyword

The depth keyword is also used in combination with the content keyword to spec-
ify an upper limit to the pattern matching. Using the depth keyword, you can specify an
offset from the start of the data part. Data after that offset is not searched for pattern
matching. If you use both offset and depth keywords with the content keyword, you can
specify the range of data within which pattern matching should be done. The following
rule tries to find the word “HTTP” between characters 4 and 40 of the data part of the
TCP packet.

alert tcp 192.168.1.0/24 any -> any any (content: \

 "HTTP"; offset: 4; depth: 40; msg: "HTTP matched";)

This keyword is very important since you can use it to limit searching inside the
packet. For example, information about HTTP GET requests is found in the start of the
packet. There is no need to search the entire packet for such strings. Since many packets
you capture are very long in size, it wastes a lot of time to search for these strings in the
entire packet. The same is true for many other Snort signatures.

3.6.6 The content-list Keyword

The content-list keyword is used with a file name. The file name, which is used as
an argument to this keyword, is a text file that contains a list of strings to be searched
inside a packet. Each string is located on a separate line of the file. For example, a file
named “porn” may contain the following three lines:

“porn”

“hardcore”

“under 18”

The following rule will search these strings in the data portion of all packets
matching the rule criteria.

alert ip any any -> 192.168.1.0/24 any (content-list: \

 "porn"; msg: "Porn word matched";)

You can also use the negation sign ! with the file name if you want to generate an
alert for a packet where no strings match.

3.6.7 The dsize Keyword

The dsize keyword is used to find the length of the data part of a packet. Many
attacks use buffer overflow vulnerabilities by sending large size packets. Using this key-
word, you can find out if a packet contains data of a length larger than, smaller than, or

96 Chapter 3 • Working with Snort Rules

equal to a certain number. The following rule generates an alert if the data size of an IP
packet is larger than 6000 bytes.

alert ip any any -> 192.168.1.0/24 any (dsize: > 6000; \
 msg: "Large size IP packet detected";)

3.6.8 The flags Keyword

The flags keyword is used to find out which flag bits are set inside the TCP header
of a packet. Each flag can be used as an argument to flags keyword in Snort rules. A
detailed description of the TCP flag bits is present in RFC 793 at http://www.rfc-edi-
tor.org/rfc/rfc793.txt. These flag bits are used by many security related tools for differ-
ent purposes including port scanning tools like nmap (http://www.nmap.org). Snort
supports checking of these flags listed in Table 3-2.

You can also use !, +, and * symbols just like IP header flag bits (discussed under
the fragbits keyword) for AND, OR and NOT logical operations on flag bits being
tested. The following rule detects any scan attempt using SYN-FIN TCP packets.

alert tcp any any -> 192.168.1.0/24 any (flags: SF; \
 msg: “SYNC-FIN packet detected”;)

Table 3-2 TCP flag bits

Flag
Argument character used in

Snort rules

FIN or Finish Flag F

SYN or Sync Flag S

RST or Reset Flag R

PSH or Push Flag P

ACK or Acknowledge Flag A

URG or Urgent Flag U

Reserved Bit 1 1

Reserved Bit 2 2

No Flag set 0

Rule Options 97

Note that ! symbol is used for NOT, + is used for AND, and * is used for OR
operation.

3.6.9 The fragbits Keyword

The IP header contains three flag bits that are used for fragmentation and re-
assembly of IP packets. These bits are listed below:

• Reserved Bit (RB), which is reserved for future use.
• Don’t Fragment Bit (DF). If this bit is set, it shows that the IP packet should not

be fragmented.
• More Fragments Bit (MF). If this bit is set, it shows that more fragments of this

IP packet are on the way. If this bit is not set, it shows that this is the last
fragment (or the only fragment) of the IP packet. The sending host fragments IP
packets into smaller packets depending on the maximum size packet that can be
transmitted through a communication medium. For example, the Maximum
Transfer Units or MTU defines the maximum length of a packet on the Ethernet
networks. This bit is used at the destination host to reassemble IP fragments.

For more information on Flag bits refer to RFC 791 at http://www.rfc-editor.org/
rfc/rfc791.txt. Sometimes these bits are used by hackers for attacks and to find out
information related to your network. For example, the DF bit can be used to find the
minimum and maximum MTU for a path from source to destination. Using the fragbits
keyword, you can find out if a packet contains these bits set or cleared. The following
rule is used to detect if the DF bit is set in an ICMP packet.

alert icmp any any -> 192.168.1.0/24 any (fragbits: D; \
 msg: "Don’t Fragment bit set";)

In this rule, D is used for DF bit. You can use R for reserved bit and M for MF bit.
You can also use the negation symbol ! in the rule. The following rule detects if the DF
bit is not set, although this rule is of little use.

alert icmp any any -> 192.168.1.0/24 any (fragbits: !D; \
 msg: "Don’t Fragment bit not set";)

The AND and OR logical operators can also be used to check multiple bits. The +
symbol specifies all bits be matched (AND operation) while the * symbol specifies any
of the specified bits be matched (OR operation).

98 Chapter 3 • Working with Snort Rules

3.6.10 The icmp_id Keyword

The icmp_id option is used to detect a particular ID used with ICMP packet. Refer
to Appendix C for ICMP header information. The general format for using this key-
word is as follows:

icmp_id: <ICMP_id_number>

An ICMP identified field is found in ICMP ECHO REQUEST and ICMP ECHO
REPLY messages as discussed in RFC 792. This field is used to match ECHO
REQUEST and ECHO REPLY messages. Usually when you use the ping command,
both of these types of ICMP packets are exchanged between sending and receiving
hosts. The sending host sends ECHO REQUEST packets and the destination host
replies with ECHO REPLY-type ICMP packets. This field is useful for discovering
which packet is the reply to a particular request. The following rule checks if the ICMP
ID field in the ICMP header is equal to 100. It generates an alert if this criterion is met.

alert icmp any any -> any any (icmp_id: 100; \

 msg: "ICMP ID=100";)

3.6.11 The icmp_seq Keyword

The icmp_seq option is similar to the icmp_id keyword The general format for
using this keyword is as follows:

icmp_seq: <ICMP_seq_number>

The sequence number is also a field in the ICMP header and is also useful in
matching ICMP ECHO REQUEST and ECHO REPLY matches as mentioned in RFC
792. The keyword helps to find a particular sequence number. However, the practical
use of this keyword is very limited. The following rule checks a sequence number of
100 and generates an alert:

alert icmp any any -> any any (icmp_seq: 100; \

 msg: "ICMP Sequence=100";)

3.6.12 The itype Keyword

The ICMP header comes after the IP header and contains a type field. Appendix C
explains the IP header and the different codes that are used in the type field. A detailed
discussion is found in RFC 792 at http://www.rfc-editor.org/rfc/rfc792.txt. The itype
keyword is used to detect attacks that use the type field in the ICMP packet header. The
argument to this field is a number and the general format is as follows:

itype: "ICMP_type_number"

Rule Options 99

The type field in the ICMP header of a data packet is used to determine the type of
the ICMP packet. Table 3-3 lists different ICMP types and values of the type field in the
ICMP header.

For example, if you want to generate an alert for each source quench message, use
the following rule:

alert icmp any any -> any any (itype: 4; \
 msg: "ICMP Source Quench Message received";)

The ICMP code field is used to further classify ICMP packets.

3.6.13 The icode Keyword

In ICMP packets, the ICMP header comes after the IP header. It contains a code
field, as shown in Appendix C and RFC 792 at http://www.rfc-editor.org/rfc/rfc792.txt.
The icode keyword is used to detect the code field in the ICMP packet header. The argu-
ment to this field is a number and the general format is as follows:

icode: "ICMP_codee_number"

Table 3-3 ICMP type filed values

Value Type of ICMP Packet

0 Echo reply

3 Destination unreachable

4 Source quench

5 Redirect

8 Echo request

11 Time exceed

12 Parameter problem

13 Timestamp request

14 Timestamp reply

15 Information request

16 Information reply

100 Chapter 3 • Working with Snort Rules

The type field in the ICMP header shows the type of ICMP message. The code
field is used to explain the type in detail. For example, if the type field value is 5, the
ICMP packet type is “ICMP redirect” packet. There may be many reasons for the gen-
eration of an ICMP redirect packet. These reasons are defined by the code field as listed
below:

• If code field is 0, it is a network redirect ICMP packet.

• If code field is 1, it is a host redirect packet.

• If code is 2, the redirect is due to the type of service and network.

• If code is 2, the redirect is due to type of service and host.

The icode keyword in Snort rule options is used to find the code field value in the
ICMP header. The following rule generates an alert for host redirect ICMP packets.

alert icmp any any -> any any (itype: 5; \

 icode: 1; msg: "ICMP ID=100";)

Both itype and icode keywords are used. Using the icode keyword alone will not
do the job because other ICMP types may also use the same code value.

3.6.14 The id Keyword

The id keyword is used to match the fragment ID field of the IP packet header. Its
purpose is to detect attacks that use a fixed ID number in the IP header of a packet. Its
format is as follows:

id: "id_number"

If the value of the id field in the IP packet header is zero, it shows that this is the
last fragment of an IP packet (if the packet was fragmented). The value 0 also shows
that it is the only fragment if the packet was not fragmented. The id keyword in the
Snort rule can be used to determine the last fragment in an IP packet.

3.6.15 The ipopts Keyword

A basic IPv4 header is 20 bytes long as described in Appendix C. You can add
options to this IP header at the end. The length of the options part may be up to 40
bytes. IP options are used for different purposes, including:

• Record Route (rr)

• Time Stamps (ts)

Rule Options 101

• Loose Source Routing (lsrr)

• Strict Source Routing (ssrr)

For a complete list of IP options see RFC 791 at http://www.rfc-editor.org/rfc/
rfc791.txt. In Snort rules, the most commonly used options are listed above. These
options can be used by some hackers to find information about your network. For exam-
ple, loose and strict source routing can help a hacker discover if a particular network
path exists or not.

Using Snort rules, you can detect such attempts with the ipopts keyword. The fol-
lowing rule detects any attempt made using Loose Source Routing:

alert ip any any -> any any (ipopts: lsrr; \

 msg: "Loose source routing attempt";)

 You can also use a logto keyword to log the messages to a file. However, you
can’t specify multiple IP options keywords in one rule.

3.6.16 The ip_proto Keyword

The ip_proto keyword uses IP Proto plug-in to determine protocol number in the
IP header. The keyword requires a protocol number as argument. You can also use a
name for the protocol if it can be resolved using /etc/protocols file. Sample
entries in this file look like the following:

ax.25 93 AX.25 # AX.25 Frames

ipip 94 IPIP # Yet Another IP encapsulation

micp 95 MICP # Mobile Internetworking
Control Pro.

scc-sp 96 SCC-SP # Semaphore Communications
Sec. Pro.

etherip 97 ETHERIP # Ethernet-within-IP
Encapsulation

encap 98 ENCAP # Yet Another IP encapsulation

99 # any private encryption
scheme

gmtp 100 GMTP # GMTP

ifmp 101 IFMP # Ipsilon Flow Management
Protocol

pnni 102 PNNI # PNNI over IP

The following rule checks if IPIP protocol is being used by data packets:

alert ip any any -> any any (ip_proto: ipip; \

 msg: "IP-IP tunneling detected";)

102 Chapter 3 • Working with Snort Rules

The next rule is the same except that it uses protocol number instead of name
(more efficient).

alert ip any any -> any any (ip_proto: 94; \
 msg: "IP-IP tunneling detected";)

Protocol numbers are defined in RFC 1700 at http://www.rfc-editor.org/rfc/
rfc1700.txt. The latest numbers can be found from the ICANN web site at http://
www.icann.org or at IANA web site http://www.iana.org.

3.6.17 The logto Keyword

The logto keyword is used to log packets to a special file. The general syntax is as
follows:

logto:logto_log

Consider the following rule:

alert icmp any any -> any any (logto:logto_log; ttl: 100;)

This rule will log all ICMP packets having TTL value equal to 100 to file
logto_log. A typical logged packet in this file is as follows:

[root@conformix]# cat logto_log
07/03-03:57:56.496845 192.168.1.101 -> 192.168.1.2
ICMP TTL:100 TOS:0x0 ID:33822 IpLen:20 DgmLen:60
Type:8 Code:0 ID:768 Seq:9217 ECHO
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70
abcdefghijklmnop
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
qrstuvwabcdefghi

=+

[root@conformix]#

Information logged in the above example is as follows:

• Data and time the packet was logged.
• Source IP address is 192.168.1.101.
• Destination IP address is 192.168.1.2.
• Protocol used in the packet is ICMP.
• The TTL (Time To Live) field value in the IP header is 100.
• The TOS (Type Of Service) field value in IP header is 0. This value shows that

this is a normal packet. For details of other TOS values, refer to RFC 791.

Rule Options 103

• IP packet ID is 33822.
• Length of IP header is 20 bytes.
• Length of the packet is 60 bytes.
• ICMP type filed value is 8.
• ICMP code value is 0.
• ICMP ID value is 768.
• ICMP Sequence field value is 9217.
• The ECHO part shows that this is an ICMP ECHO packet.
• The remaining part of the log shows the data that follows the ICMP header.

There are a few things to remember when you use this option:

• Don’t use the full path with the file name. The file will automatically be created
in the log directory which is /var/log/snort by default.

• Don’t use a space character after the colon character used with logto keyword.
If you use a space character, it is considered part of the file name. If you use a
space character for clarity, enclose the file name in double quotation marks.

3.6.18 The msg Keyword

The msg keyword in the rule options is used to add a text string to logs and alerts.
You can add a message inside double quotations after this keyword. The msg keyword
is a common and useful keyword and is part of most of the rules. The general form for
using this keyword is as follows:

msg: "Your message text here";

If you want to use some special character inside the message, you can escape them
by a backslash character.

3.6.19 The nocase Keyword

The nocase keyword is used in combination with the content keyword. It has no
arguments. Its only purpose is to make a case insensitive search of a pattern within the
data part of a packet.

3.6.20 The priority Keyword

The priority keyword assigns a priority to a rule. Priority is a number argument to
this keyword. Number 1 is the highest priority. The keyword is often used with the
classtype keyword. The following rule has a priority 10:

104 Chapter 3 • Working with Snort Rules

alert ip any any -> any any (ipopts: lsrr; \

 msg: "Loose source routing attempt"; priority: 10;)

The priority keyword can be used to differentiate high priority and low priority
alerts.

3.6.21 The react Keyword

The react keyword is used with a rule to terminate a session to block some sites or
services. Not all options with this keyword are operational. The following rule will
block all HTTP connections originating from your home network 192.168.1.0/24. To
block the HTTP access, it will send a TCP FIN and/or FIN packet to both sending and
receiving hosts every time it detects a packet that matches these criteria. The rule causes
a connection to be closed.

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing \
 HTTP connection"; react: block;)

In the above rule, block is the basic modifier. You can also use the warn modifier
to send a visual notice to the source. You can also use the additional modifier msg
which will include the msg string in the visual notification on the browser. The follow-
ing is an example of this additional modifier.

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing \
 HTTP connection”; react: warn, msg;)

In order to use the react keyword, you should compile Snort with --enable-
flexresp command line option in the configure script. For a discussion of the compi-
lation process, refer to Chapter 2.

The react should be the last keyword in the options field. The warn modifier still
does not work properly in the version of Snort I am using.

3.6.22 The reference Keyword

The reference keyword can add a reference to information present on other sys-
tems available on the Internet. It does not play any role in the detection mechanism
itself and you can safely ignore it as far as writing Snort rules is concerned. There are
many reference systems available, such as CVE and Bugtraq. These systems keep addi-
tional information about known attacks. By using this keyword, you can link to this
additional information in the alert message. For example, look at the following rule in
the misc.rules file distributed with Snort:

Rule Options 105

alert udp $EXTERNAL_NET any -> $HOME_NET 1900 \

(msg:"MISC UPNP malformed advertisement"; \

content:"NOTIFY * "; nocase; classtype:misc-attack; \

reference:cve,CAN-2001-0876; reference:cve, \

CAN-2001-0877; sid:1384; rev:2;)

This rule generates the following entry in /var/log/snort/alert file:

[**] [1:1384:2] MISC UPNP malformed advertisement [**]

[Classification: Misc Attack] [Priority: 2]

12/01-15:25:21.792758 192.168.1.1:1901 -> 239.255.255.250:1900

UDP TTL:150 TOS:0x0 ID:9 IpLen:20 DgmLen:341

Len: 321

[Xref => cve CAN-2001-0877][Xref => cve CAN-2001-0876]

The last line of this alert shows a reference where more information about this
alert can be found. The reference.config file plays an important role because it
contains the actual URL to reach a particular reference. For example, the following line
in reference.config file will reach the actual URL using the last line of the alert
message.

config reference: cve http://cve.mitre.org/cgi-bin/
cvename.cgi?name=

When you add CAN-2001-0876 at the end of this URL, you will reach the web
site containing information about this alert. So the actual URL for information about
this alert is http://cve.mitre.org/cgi-bin/cvename.cgi?name= CAN-2001-0876.

Multiple references can be placed in a rule. References are also used by tools like
ACID3 to provide additional information about a particular vulnerability. The same log
message, when displayed in an ACID window, will look like Figure 3-4. In this figure,
the URL is already inserted under the “Triggered Signature” heading. You can click on
it to go to the CVE web site for more information.

3.6.23 The resp Keyword

The resp keyword is a very important keyword. It can be used to knock down
hacker activity by sending response packets to the host that originates a packet match-
ing the rule. The keyword is also known as Flexible Response or simply FlexResp and
is based on the FlexResp plug-in. The plug-in should be compiled into Snort, as
explained in Chapter 2, using the command line option (--with-flexresp) in the

3. ACID is discussed in Chapter 6.

106 Chapter 3 • Working with Snort Rules

Figure 3-4 Use of reference keyword in ACID window.

Rule Options 107

configure script. The following rule will send a TCP Reset packet to the sender when-
ever an attempt to reach TCP port 8080 on the local network is made.

alert tcp any any -> 192.168.1.0/24 8080 (resp: rst_snd;)

You can send multiple response packets to either sender or receiver by specifying
multiple responses to the resp keyword. The arguments are separated by a comma. The
list of arguments that can be used with this keyword is found in Table 3-4.

3.6.24 The rev Keyword

The rev keyword is added to Snort rule options to show a revision number for the
rule. If you are updating rules, you can use this keyword to distinguish among different
revision. Output modules can also use this number to identify the revision number. The
following rule shows that the revision number is 2 for this rule:

alert ip any any -> any any (ipopts: lsrr; \

 msg: "Loose source routing attempt"; rev: 2;)

For more information, refer to the sid keyword, which is related to the rev key-
word.

3.6.25 The rpc Keyword

The rpc keyword is used to detect RPC based requests. The keyword accepts three
numbers as arguments:

• Application number

Table 3-4 Arguments to resp keyword

Argument Description

rst_snd Sends a TCP Reset packet to the sender of the packet

rst_rcv Sends a TCP Reset packet to the receiver of the packet

rst_all Sends a TCP Reset packet to both sender and receiver

icmp_net Sends an ICMP Network Unreachable packet to sender

icmp_host Sends an ICMP Host Unreachable packet to sender

icmp_port Sends an ICMP Port Unreachable packet to sender

icmp_all Sends all of the above mentioned packets to sender

108 Chapter 3 • Working with Snort Rules

• Procedure number
• Version number

These arguments are separated by a comma. You can also use an asterisk to match
all numbers in a particular location of the arguments. The following rule detects RPC
requests for TPC number 10000, all procedures and version number 3.

alert ip any any -> 192.168.1.0/24 any (rpc: 10000,*,3; \
 msg: "RPC request to local network";)

3.6.26 The sameip Keyword

The sameip keyword is used to check if source and destination IP addresses are
the same in an IP packet. It has no arguments. Some people try to spoof IP packets to
get information or attack a server. The following rule can be used to detect these
attempts.

alert ip any any -> 192.168.1.0/24 any (msg: "Same IP"; \
 sameip;)

3.6.27 The seq Keyword

The seq keyword in Snort rule options can be used to test the sequence number of
a TCP packet. The argument to this keyword is a sequence number. The general format
is as follows:

seq: "sequence_number";

Sequence numbers are a part of the TCP header. More explanation of sequence
number is found in Appendix C where the TCP header is discussed.

3.6.28 The flow4 Keyword

The flow keyword is used to apply a rule on TCP sessions to packets flowing in a
particular direction. You can use options with the keyword to determine direction. The
following options can be used with this keyword determine direction:

• to_client
• to_server
• from_client
• from_server

4. This is available in Snort 1.9 and above.

Rule Options 109

These options may be confusing the first time you look at them. Just keep in mind
that options starting with “to” are used for responses and options starting with “from”
are used for requests.

Other options are also available which are used to apply the rule to different states
of a TCP connection.

• The stateless option is used to apply the rule without considering the state of a
TCP session.

• The established option is used to apply the rule to established TCP sessions
only.

• The no_stream option enables rules to be applied to packets that are not built
from a stream.

• The stream_only option is used to apply the rules to only those packets that are
built from a stream.

TCP streams are handled by the stream4 preprocessor discussed in the next chap-
ter. TCP streams are also discussed in RFC 793. A TCP session is established and fin-
ished with a defined sequence of TCP packet exchanges as defined in RFC 793. The
stateless and established options are related to TCP session state.

3.6.29 The session Keyword

The session keyword can be used to dump all data from a TCP session. It can
dump all session data or just printable characters. The following rule dumps all print-
able data from POP3 sessions:

log tcp any any -> 192.168.1.0/24 110 (session: printable;)

If you use “all” as argument to this keyword, everything will be dumped. Use the
logto keyword to log the traffic to a particular file.

A TCP session is a sequence of data packets exchanged between two hosts. The
session is usually initiated and closed by the client using the three-way handshake
method discussed in RFC 793. For example, when your e-mail client software starts
collecting e-mail from a POP3 server, it first starts the communication by exchanging
TCP packets. The mail is then downloaded. After downloading the e-mail, the client
closes the connection. All communication taking place during this process is a TCP
session.

110 Chapter 3 • Working with Snort Rules

3.6.30 The sid Keyword

The sid keyword is used to add a “Snort ID” to rules. Output modules or log scan-
ners can use SID to identify rules. Authors have reserved SID ranges for rules as shown
below:

• Range 0-99 is reserved for future use.
• Range 100-1,000,000 is reserved for rules that come with Snort distribution.
• All numbers above 1,000,000 can be used for local rules.

Refer to the list of rules that came with your Snort distribution for examples. The
only argument to this keyword is a number. The following rule adds SID equal to
1000001.

alert ip any any -> any any (ipopts: lsrr; \

 msg: "Loose source routing attempt"; sid: 1000001;)

Using SID, tools like ACID can display the actual rule that generated a particular
alert.

3.6.31 The tag Keyword

The tag keyword is another very important keyword that can be used for logging
additional data from/to the intruder host when a rule is triggered. The additional data
can then be analyzed later on for detailed intruder activity. The general syntax of the
keyword is as follows:

tag: <type>, <count>, <metric>[, direction]

The arguments are explained in Table 3-5.

Table 3-5 Arguments used with tag keyword

Argument Description

Type You can use either “session” or “host” as the type argument. Using session, packets are
logged from the particular session that triggered the rule. Using host, all packets from
the host are logged.

Count This indicates either the number of packets logged or the number of seconds during
which packets will be logged. The distinction between the two is made by the metric
argument.

Metric You can use either “packets” or “seconds” as mentioned above.

Direction This argument is optional. You can use either “src” to log packets from source or “dst”
to log packets from the destination.

Rule Options 111

The following rule logs 100 packets on the session after it is triggered.

alert tcp 192.168.2.0/24 23 -> any any \
 (content: "boota"; msg: "Detected boota"; \
 tag: session, 100, packets;)

3.6.32 The tos Keyword

The tos keyword is used to detect a specific value in the Type of Service (TOS)
field of the IP header. The format for using this keyword is as follows:

tos: 1;

For more information on the TOS field, refer to RFC 791 and Appendix C, where
the IP packet header is discussed.

3.6.33 The ttl Keyword

The ttl keyword is used to detect Time to Live value in the IP header of the packet.
The keyword has a value which should be an exact match to determine the TTL value.
This keyword can be used with all types of protocols built on the IP protocol, including
ICMP, UDP and TCP. The general format of the keyword is as follows:

ttl: 100;

The traceroute utility uses TTL values to find the next hop in the path. The tracer-
oute sends UDP packets with increasing TTL values. The TTL value is decremented at
every hop. When it reaches zero, the router generates an ICMP packet to the source.
Using this ICMP packet, the utility finds the IP address of the router. For example, to
find the fifth hop router, the traceroute utility will send UDP packets with TTL value set
to 5. When the packet reaches the router at the fifth hop, its value becomes zero and an
ICMP packet is generated.

Using the ttl keyword, you can find out if someone is trying to traceroute through
your network. The only problem is that the keyword needs an exact match of the TTL
value.

For more information on the TTL field, refer to RFC 791 and Appendix C where
the IP packet header is discussed.

3.6.34 The uricontent Keyword

The uricontent keyword is similar to the content keyword except that it is used to
look for a string only in the URI part of a packet.

112 Chapter 3 • Working with Snort Rules

3.7 The Snort Configuration File
Snort uses a configuration file at startup time. A sample configuration file
snort.conf is included in the Snort distribution. You can use any name for the con-
figuration file, however snort.conf is the conventional name. You use the -c com-
mand line switch to specify the name of the configuration file. The following command
uses /opt/snort/snort.conf as the configuration file.

/opt/snort/snort -c /opt/snort/snort.conf

You can also save the configuration file in your home directory as .snortrc, but
specifying it on the command line is the most widely used method. There are other
advantages to using the configuration file name as a command line argument to Snort.
For example, it is possible to invoke multiple Snort instances on different network inter-
faces with different configuration. This file contains six basic sections:

• Variable definitions, where you define different variables. These variables are
used in Snort rules as well as for other purposes, like specifying the location of
rule files.

• Config parameters. These parameters specify different Snort configuration
options. Some of them can also be used on the command line.

• Preprocessor configuration. Preprocessors are used to perform certain actions
before a packet is operated by the main Snort detection engine.

• Output module configuration. Output modules control how Snort data will be
logged.

• Defining new action types. If the predefined action types are not sufficient for
your environment, you can define custom action types in the Snort
configuration file.

• Rules configuration and include files. Although you can add any rules in the
main snort.conf file, the convention is to use separate files for rules. These
files are then included inside the main configuration file using the include
keyword. This keyword will be discussed later in this chapter.

Although the out-of-the-box configuration file works, you need to modify it to
adapt it to your environment. A sample configuration file is presented later on.

3.7.1 Using Variables in Rules

In the configuration file, you can use variables. This is a very convenient way of cre-
ating rules. For example, you can define a variable HOME_NET in the configuration file.

The Snort Configuration File 113

var HOME_NET 192.168.1.0/24

Later on you can use this variable HOME_NET in your rules:

alert ip any any -> $HOME_NET any (ipopts: lsrr; \
 msg: “Loose source routing attempt”; sid: 1000001;)

As you can see, using variables makes it very convenient to adapt the configura-
tion file and rules to any environment. For example, you don’t need to modify all rules
when you copy rules from one network to another; you just need to modify a single
variable.

3.7.1.1 Using a List of Networks in Variables
You can also define variables that contain multiple items. Consider that you have

multiple networks in the company. Your intrusion detection system is right behind the
company firewall connecting to the Internet. You can define a variable as a list of all of
these networks. The following variable shows that HOME_NETWORK consists of two
networks, 192.168.1.0/24 and 192.168.10.0/24.

var HOME_NET [192.168.1.0/24,192.168.10.0/24]

All networks in the variable name are separated by a comma.

3.7.1.2 Using Interface Names in Variables
You can also use interface names in defining variables. The following two state-

ments define HOME_NET and EXTERNAL_NET variables on a Linux machine.

var HOME_NET $eth0_ADDRESS
var EXTERNAL_NET $eth1_ADDRESS

The HOME_NET variable uses the IP address and network mask value assigned
to interface eth0 and EXTERNAL_NET uses the IP address and network mask
assigned to network interface eth1. This arrangement is more convenient since you
can change IP addresses on the interfaces without modifying rules or even variables
themselves.

3.7.1.3 Using the any Keyword
The any keyword can also be a variable. It matches to everything, just as it does in

rules (such as addresses and port numbers). For example, if you want to test packets
regardless of their source, you can define a variable like the following for
EXTERNAL_NET.

var EXTERNAL_NET any

There are many variables defined in the snort.conf file that come with the
Snort distribution. While installing Snort, you need to modify these variables according
to your network.

114 Chapter 3 • Working with Snort Rules

3.7.2 The config Directives

The config directives in the snort.conf file allow a user to configure many
general settings for Snort. Examples include the location of log files, the order of apply-
ing rules and so on. These directives can be used to replace many command line options
as well. The general format of applying a config directive is as follows:

config directive_name[: value]

Table 3-6 shows a list of directives used in the snort.conf file.

Table 3-6 Snort config directives

Directive Description

order Changes the order in which rules are applied. It is equivalent to the –o
command line option.

alertfile Used to set the name of the alert file. Alert file is created in log direc-
tory (see logdir directive).

classification Builds classification for rules. See explanation of the classtype key-
word used in rules.

decode_arp Equivalent to –a command line option. It turns ON arp decoding.

dump_chars_only Equivalent –C command line option.

dump_payload Equivalent to –d command line option. It is used to dump the data part
of the packet.

decode_data_link Equivalent to –e command line option. Using this directive you can
decode data link layer headers (Ethernet header, for example).

bpf_file Equivalent to –F command line option.

set_gid Equivalent to –g command line option. Using this directive you can set
the group ID under which Snort runs. For example, you can use “config
set_gid: mygroup”

daemon Equivalent to –D command line option. It invokes Snort as daemon
instead of foreground process.

reference_net Equivalent to –h command line option. It sets the home network address.

interface Equivalent to –i command line option. It sets the interface for Snort.

alert_with_interface_name Equivalent to –T command line option. This directive is used to append
the interface name to the alert message. This is sometimes useful if you
are monitoring multiple interfaces on the same sensor.

logdir Equivalent to –l command line option. It sets the directory where Snort
logs data. The default location of the log directory is /var/log/
snort.

The Snort Configuration File 115

You have already seen how the classification directive is used in the classifi-
cation.config file. As another example, the following line is used to start Snort in
the daemon mode.

config daemon

You can also use –D command line option to start Snort in the daemon mode.

umask Equivalent to –m command line option. Using this option you can set
the UMASK while running Snort.

pkt_count Equivalent to –n command line option. Using this directive you can
exit from Snort after a defined number of packets.

nolog Equivalent to –N command line option. Logging is disabled except
alerts. Remember, alerts are really both alerts and logs.

obfuscate Equivalent to –O command line option. It is used to obfuscate IP
addresses so that you are able to send the logs for analysis to someone
without disclosing the identity of your network.

no_promisc Equivalent to –p command line option and is used to disable promiscu-
ous mode.

quiet Equivalent to –q command line option. This will disable banner infor-
mation at Snort startup time and prevent statistical information from
being displayed.

chroot Equivalent to –t command line option. It is used to change root direc-
tory for Snort to a specific directory.

checksum_mode Used to checksum for particular types of packets. It takes arguments
such as none, noip, notcp, noicmp, noudp, and all.

set_uid Equivalent to –u command line option and is used to set user ID for the
Snort process.

utc Equivalent to –U command line option and is used to use UTC instead
of local time in alerts and logs.

verbose Equivalent to –v command line option. It is used to log messages to
standard output in addition to standard logging.

dump_payload_verbose Equivalent to –X command line option. This dumps the received raw
packet on the standard output.

show_year Equivalent to –y command line option and is used to display year in the
timestamp.

stateful Used to set assurance mode for stream4 preprocessor. Preprocessors
are discussed in detail in Chapter 4.

Table 3-6 Snort config directives (continued)

Directive Description

116 Chapter 3 • Working with Snort Rules

3.7.3 Preprocessor Configuration

Preprocessors or input plug-ins operate on received packets before Snort rules are
applied to them. The preprocessor configuration is the second major part of the configu-
ration file. This section provides basic information about adding or removing Snort pre-
processors. Detailed information about each preprocessor is found in the next chapter.

The general format of configuring a preprocessor is as follows:

preprocessor <preprocessor_name>[: <configuration_options>]

The first part of the line is the keyword preprocessor. The name of the preproces-
sor follows this keyword. If the preprocessor can accept some options or arguments,
you can list these options after a colon character at the end of the name of preprocessor,
which is optional.

The following is an example of a line in the configuration file for IP defragmenta-
tion preprocessor frag2.

preprocessor frag2

The following is an example of a stream4 preprocessor with an argument to detect
port scans. The stream4 preprocessor has many other arguments as well, as described in
Chapter 4.

preprocessor stream4: detect_scans

Both frag2 and stream4 are predefined preprocessors. You can also write your
own preprocessors if you are a programmer. Guidelines for writing preprocessors are
provided with the Snort source code.

3.7.4 Output Module Configuration

Output modules, also called output plug-ins, manipulate output from Snort rules.
For example, if you want to log information to a database or send SNMP traps, you
need output modules. The following is the general format for specifying an output mod-
ule in the configuration file.

output <output_module_name>[: <configuration_options>]

For example, if you want to store log messages to a MySQL database, you can
configure an output module that contains the database name, database server address,
user name and password.

output database: alert, mysql, user=rr password=boota \

 dbname=snort host=localhost

The Snort Configuration File 117

There may be additional steps to make the output module work properly. In the
case of MySQL database, you need to setup a database, create tables, create user, set
permissions and so on. More information on configuring output modules is found in
Chapter 4.

3.7.5 Defining New Action Types

You already know that the first part of each Snort rule is the action item. Snort has
predefined action types; however, you can also define your own action types in the con-
figuration file. A new action type may use multiple output modules. The following
action type creates alert messages that are logged into the database as well as in a file in
the tcpdump format.

ruletype dump_database
{
 type alert
 output database: alert, mysql, user=rr dbname=snort \
 host=localhost
 output log_tcpdump: tcpdump_log_file
}

This new action type can be used in rules just like other action types.

dump_database icmp any any -> 192.168.1.0/24 any \
 (fragbits: D; msg: "Don’t Fragment bit set";)

When a packet matches the criteria in this rule, the alert will be logged to the data-
base as well as to the tcpdump_log_file.

3.7.6 Rules Configuration

The rules configuration is usually the last part of the configuration file. You can
create as many rules as you like using variables already defined in the configuration file.
All of the previous discussion in this chapter was about writing new rules. The rules
configuration is the place in the configuration file where you can put your rules. How-
ever the convention is to put all Snort rules in different text files. You can include these
text files in the snort.conf file using the “include” keyword. Snort comes with
many predefined rule files. The names of these rule files end with .rule. You have
already seen in the last chapter how to put these rule files in the proper place during the
installation process.

3.7.7 Include Files

You can include other files inside the main configuration file using the include
keyword. You can think of including a file as equivalent to inserting the contents of the

118 Chapter 3 • Working with Snort Rules

included file into the main configuration file at the point where it is included. In fact,
most of the predefined rules that come with the Snort distribution are found in include
files. All files in the Snort distribution whose name ends with .rules contain rules
and they are included in the snort.conf file. These rule files are included in the
main snort.conf file using the “include” keyword. The following is an example of
including myrules.rules file in the main configuration file.

include myrules.rules

It is not necessary that the name of the rules file must end with .rule. You can
use a name of your choice for your rule file.

3.7.8 Sample snort.conf File

The following is a sample configuration file for Snort. All lines starting with the #
character are comment lines. Whenever you modify the configuration file, you have to
restart Snort for the changes to take effect.

Variable Definitions
var HOME_NET 192.168.1.0/24
var EXTERNAL_NET any
var HTTP_SERVERS $HOME_NET
var DNS_SERVERS $HOME_NET
var RULE_PATH ./

preprocessors
preprocessor frag2
preprocessor stream4: detect_scans
preprocessor stream4_reassemble
preprocessor http_decode: 80 -unicode -cginull
preprocessor unidecode: 80 -unicode -cginull
preprocessor bo: -nobrute
preprocessor telnet_decode
preprocessor portscan: $HOME_NET 4 3 portscan.log
preprocessor arpspoof

output modules
output alert_syslog: LOG_AUTH LOG_ALERT
output log_tcpdump: snort.log
output database: log, mysql, user=rr password=boota \
 dbname=snort host=localhost
output xml: log, file=/var/log/snortxml

Rules and include files
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules

Order of Rules Based upon Action 119

include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet.rules
include $RULE_PATH/smtp.rules
include $RULE_PATH/rpc.rules
include $RULE_PATH/dos.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/tftp.rules
include $RULE_PATH/web-cgi.rules
include $RULE_PATH/web-coldfusion.rules
include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-misc.rules
include $RULE_PATH/web-attacks.rules
include $RULE_PATH/sql.rules
include $RULE_PATH/x11.rules
include $RULE_PATH/icmp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules
include $RULE_PATH/attack-responses.rules
include $RULE_PATH/myrules.rules

3.8 Order of Rules Based upon Action
The five types of the rules can be categorized into three basic types.

1. Alert rules
2. Pass rules
3. Log rules

When a packet is received by Snort, it is checked in this order. Each packet has to
go through all Alert rule checks before it is allowed to pass. This scheme is the most
secure since no packet passes through without being checked against all alert types.
However most of the packets are normal traffic and do not show any intruder activity.
Testing all of the packets against all alert rules requires a lot of processing power. Snort
provides a way to change this testing order to one which is more efficient, but more
dangerous.

1. Pass rules
2. Alert rules
3. Log rules

120 Chapter 3 • Working with Snort Rules

You must be careful when choosing this order because just one badly written pass
rule may allow many alert packets to pass through without being checked. If you really
know what you are doing, you can use the –o command line switch to disable the
default order and enable the new order of applying rules. You can also use “config
order” in the configuration file for this purpose. Again, this is dangerous and you have
been warned twice now! If you are sure of what you are doing, add this line in the
snort.conf file:

config order

If you define your own rule types, they are checked last in the sequence. For exam-
ple, if you have defined a rule type snmp_alerts, the order of rule application will be:

Alert -> Pass -> Log ->snmp_alerts

3.9 Automatically Updating Snort Rules
There are multiple tools available to update Snort signatures. When using any of these
tools you must be careful because you may accidentally modify or delete your custom-
ized rules. I shall discuss two methods of updating rules.

3.9.1 The Simple Method

This method consists of a simple shell script. It requires that you have wget pro-
gram installed on your system. The wget program is used to retrieve any file using
HTTP protocol. In essence, it is just like a web browser, but it retrieves one file from a
command line argument.

#!/bin/sh
Place of storing your Snort rules. Change these variables
according to your installation.

RULESDIR=/etc/snort
RULESDIRBAK=/etc/snort/bak

Path to wget program. Modify for your system if needed.
WGETPATH=/usr/bin

URI for Snort rules
RULESURI=http://www.snort.org/downloads/snortrules.tar.gz

Get and untar rules.
cd /tmp
rm -rf rules
$WGETPATH/wget $RULESURI

Automatically Updating Snort Rules 121

tar -zxf snortrules.tar.gz
rm –f snortrules.tar.gz

Make a backup copy of existing rules
mv $RULESDIR/*.rules $RULESDIRBAK

Copy new rules to the location
mv /tmp/rules/*.rules $RULESDIR

Let us explore how this script works. The following lines simply set some vari-
ables.

RULESDIR=/etc/snort
RULESDIRBAK=/etc/snort/bak
WGETPATH=/usr/bin
RULESURI=http://www.snort.org/downloads/snortrules.tar.gz

The following three lines are used to go to /tmp directory, remove any existing
directory /tmp/rules and download the snortrules.tar.gz file from the URI
specified by the $RULESURI variable.

cd /tmp
rm -rf rules
$WGETPATH/wget $RULESURI

After downloading, you extract the rules files from snortrules.tar.gz file
and then delete it using the following two lines. The files extracted are placed in /
tmp/rules directory.

tar -zxf snortrules.tar.gz
rm -f snortrules.tar.gz

The following line makes a backup copy of existing rules files, just in case you
need the old copy later on.

mv $RULESDIR/*.rules $RULESDIRBAK

The last line in the script moves new rules from /tmp/rules directory to the
actual rules directory /etc/snort where Snort can read them.

mv /tmp/rules/*.rules $RULESDIR

Make sure to restart Snort after running this script. If you have a start script like
the one described in Chapter 2, you can add a line at the end of the shell script to restart
Snort.

/etc/init.d/snortd restart

You may also restart Snort using the command line.

122 Chapter 3 • Working with Snort Rules

3.9.2 The Sophisticated and Complex Method

This section provides information about the use of Oinkmaster found at http://
www.algonet.se/~nitzer/oinkmaster/. Oinkmaster is a tool to update Snort rule files. It is
written in Perl, so you must have Perl installed on your Snort machine to make this tool
work. It can be configured to download new rule files from the Internet, find out what
rules need to be updated and then updates them. If you have modified some standard
rules according to your own requirements, you can configure Oinkmaster not to update
these customized rules. At the time of writing this book, version 0.6 of this tool is avail-
able. By now updated versions may be available. Oinkmaster is a Perl script and uses a
configuration file to update the rules.

It is recommended that you use a temporary directory the first time you use this
Perl script. I have used /tmp/rules directory. When you use the following command,
it will download all rules, untar them and save all files in /tmp/rules directory.

[rr@conformix]$./oinkmaster.pl -o /tmp/rules/

Downloading rules archive from http://www.snort.org/dl/signatures/
snortrules.tar.gz...

12:27:09 URL:http://www.snort.org/dl/signatures/snortrules.tar.gz [79487/79487]
-> "/tmp/oinkmaster.9875/snortrules.tar.gz" [1]

Archive successfully downloaded, unpacking... tar: rules/attack-responses.rules:
time stamp 2002-07-14 13:10:24 is 348194 s in the future

tar: rules/classification.config: time stamp 2002-07-14 13:10:24 is 348194 s in
the future

tar: rules/sid-msg.map: time stamp 2002-07-14 13:10:24 is 348194 s in the future

tar: rules/x11.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future

tar: rules/web-misc.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/web-iis.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/web-frontpage.rules: time stamp 2002-07-14 13:10:24 is 348194 s in
the future

tar: rules/web-coldfusion.rules: time stamp 2002-07-14 13:10:24 is 348194 s in
the future

tar: rules/web-cgi.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/web-attacks.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/virus.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future

tar: rules/tftp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future

tar: rules/telnet.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/sql.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future

tar: rules/smtp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future

tar: rules/shellcode.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/scan.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future

Automatically Updating Snort Rules 123

tar: rules/rservices.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/rpc.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/porn.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/policy.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the

future
tar: rules/netbios.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the

future
tar: rules/misc.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/local.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/info.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/icmp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/icmp-info.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the

future
tar: rules/ftp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/finger.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the

future
tar: rules/exploit.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the

future
tar: rules/dos.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/dns.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/ddos.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/bad-traffic.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the

future
tar: rules/backdoor.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the

future
tar: rules/snort.conf: time stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future
done.
Disabling rules according to ./oinkmaster.conf... 0 rules disabled.
Comparing new files to the old ones... done.

[***] Results from Oinkmaster started Wed Jul 10 12:25:37 2002 [***]

[*] Rules added/removed/modified: [*]

 [+++] Added: [+++]

 -> File "tftp.rules":
 alert udp any any -> any 69 (msg:"TFTP GET shadow"; content: "|0001|";

offset:0; depth:2; content:"shadow"; nocase; classtype:successful-admin;
sid:1442; rev:1;)

 alert udp any any -> any 69 (msg:"TFTP GET passwd"; content: "|0001|";
offset:0; depth:2; content:"passwd"; nocase; classtype:successful-admin;
sid:1443; rev:1;)

 alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP parent directory";
content:".."; reference:arachnids,137; reference:cve,CVE-1999-0183;
classtype:bad-unknown; sid:519; rev:1;)

 [///] Modified active: [///]

 -> File "tftp.rules":

124 Chapter 3 • Working with Snort Rules

 Old: alert udp $EXTERNAL_NET any -> $HOME_NET 64 (msg:"TFTP Put";
content:"|00 02|"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype:bad-unknown; sid:518; rev:3;)

 New: alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Put";
content:"|00 02|"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype:bad-unknown; sid:518; rev:3;)

[*] Non-rule lines added/removed: [*]
 None.

[*] Added files: [*]
 None.

The tool gives you a detailed report of actions taken during the update process.
You can test this by deleting and modifying some rules and running the tool again. The
following is a partial output seen when Oinkmaster adds and updates some rules.

Comparing new files to the old ones... done.

[***] Results from Oinkmaster started Wed Jul 10 12:25:37 2002 [***]

[*] Rules added/removed/modified: [*]

 [+++] Added: [+++]

 -> File "tftp.rules":
 alert udp any any -> any 69 (msg:"TFTP GET shadow"; content: "|0001|";

offset:0; depth:2; content:"shadow"; nocase; classtype:successful-admin;
sid:1442; rev:1;)

 alert udp any any -> any 69 (msg:"TFTP GET passwd"; content: "|0001|";
offset:0; depth:2; content:"passwd"; nocase; classtype:successful-admin;
sid:1443; rev:1;)

 alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP parent directory";
content:".."; reference:arachnids,137; reference:cve,CVE-1999-0183;
classtype:bad-unknown; sid:519; rev:1;)

 [///] Modified active: [///]

 -> File "tftp.rules":
 Old: alert udp $EXTERNAL_NET any -> $HOME_NET 64 (msg:"TFTP Put";

content:"|00 02|"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype:bad-unknown; sid:518; rev:3;)

 New: alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Put";
content:"|00 02|"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype:bad-unknown; sid:518; rev:3;)

[*] Non-rule lines added/removed: [*]
 None.

[*] Added files: [*]
 None.

Default Snort Rules and Classes 125

The script uses a configuration file where many options can be configured. Specif-
ically you can configure the following in the configuration file oinkmaster.conf:

• URL of the location from where it downloads the Snort rules. By default this
URL is http://www.snort.org/downloads/signatures/snortrules.tar.gz or http://
www.snort.org/downloads/snortrules.tar.gz. This is configured using the url
keyword in the configuration file.

• Files to be updated. By default files ending with .rules, .config, .conf,
.txt and .map are updated and all other files are ignored. This is done using
the update_files keyword.

• Files to be skipped when updating rules. This is done using the skipfile
keyword. You can use as many skipfiles lines as you like. This option is useful
when you have customized rules in some files. When you skip these files, your
customized rules will not be overwritten during the update process.

• You can disable certain rules permanently using the disablesid keyword in the
configuration file. The tool will not update these rules during the update.

Please use the README and INSTALL files that come with the tool. You can use
this tool from a cron script to periodically update your rule set.

3.10 Default Snort Rules and Classes
Snort comes with a rich set of rules. These rules are divided into different files. Each
file represents one class of rules. In the source code distribution of Snort, these files are
present under the rules directory in the source code tree. The following is a list of the
rule files in Snort 1.9.0 distribution:

attack-responses.rules
backdoor.rules
bad-traffic.rules
chat.rules
ddos.rules
deleted.rules
dns.rules
dos.rules
experimental.rules
exploit.rules
finger.rules
ftp.rules
icmp-info.rules
icmp.rules

126 Chapter 3 • Working with Snort Rules

imap.rules
info.rules
local.rules
Makefile
Makefile.am
Makefile.in
misc.rules
multimedia.rules
mysql.rules
netbios.rules
nntp.rules
oracle.rules
other-ids.rules
p2p.rules
policy.rules
pop3.rules
porn.rules
rpc.rules
rservices.rules
scan.rules
shellcode.rules
smtp.rules
snmp.rules
sql.rules
telnet.rules
tftp.rules
virus.rules
web-attacks.rules
web-cgi.rules
web-client.rules
web-coldfusion.rules
web-frontpage.rules
web-iis.rules
web-misc.rules
web-php.rules
x11.rules

For example, all rules related to X-Windows attacks are combined in
x11.rules file.

(C) Copyright 2001,2002, Martin Roesch, Brian Caswell, et al.
All rights reserved.
$Id: x11.rules,v 1.12 2002/08/18 20:28:43 cazz Exp $
#----------
X11 RULES
#----------

Sample Default Rules 127

alert tcp $EXTERNAL_NET any -> $HOME_NET 6000 (msg:"X11 MIT Magic
Cookie detected"; flow:established

; content: "MIT-MAGIC-COOKIE-1"; reference:arachnids,396;
classtype:attempted-user; sid:1225; rev:3;

)
alert tcp $EXTERNAL_NET any -> $HOME_NET 6000 (msg:"X11 xopen";

flow:established; content: "|6c00 0b
00 0000 0000 0000 0000|"; reference:arachnids,395; classtype:unknown;

sid:1226; rev:2;)

Similarly, each file contains rules specific to a particular class. The dns.rules
file contains all rules related to attacks on DNS servers, the telnet.rules file con-
tains all rules related to attacks on the telnet port, and so on.

3.10.1 The local.rules File

The local.rules file has no rules. This is meant to be used by Snort adminis-
trator for customized rules. However, you can use any file name for your own custom-
ized rules and include it in the main snort.conf file.

3.11 Sample Default Rules
You have learned the structure of Snort rules and how to write your own rules. This sec-
tion lists some predefined rules that come with Snort. All of the rules in this section are
taken from the telnet.rules file. Let us discuss each of these to give you an idea
about rules that are used in production systems.

3.11.1 Checking su Attempts from a Telnet Session

The first rule generates an alert when a user tries to su to root through a telnet ses-
sion. The rule is as shown below:

alert tcp $TELNET_SERVERS 23 -> $EXTERNAL_NET any (msg:"TELNET
Attempted SU from wrong group"; flow:

from_server,established; content:"to su root"; nocase;
classtype:attempted-admin; sid:715; rev:6;)

There are a number of things to note about this rule. The rule generates an alert
and applies to TCP packets. Major points are listed below:

• The variable $TELNET_SERVERS is defined in snort.conf file and shows
a list of Telnet servers.

• Port number 23 is used in the rule, which means that the rule will be applied to
TCP traffic going from port 23. The rule checks only response from Telnet
servers, not the requests.

128 Chapter 3 • Working with Snort Rules

• The variable $EXTERNAL_NET is defined in the snort.conf file and
shows all addresses which are outside the private network. The rule will apply
to those telnet sessions which originate from outside of the private network. If
someone from the internal network starts a Telnet session, the rule will not
detect that traffic.

• The flow keyword is used to apply this rule only to an established connection
and traffic flowing from the server.

• The content keyword shows that an alert will be generated when a packet
contains “to su root”.

• The nocase keyword allows the rule to ignore case of letters while matching the
content.

• The classtype keyword is used to assign a class to the rule. The attempted-
admin class is defined with a default priority in classification.config file.

• The rule ID is 715.
• The rev keyword is used to show version of the rule.

3.11.2 Checking for Incorrect Login on Telnet Sessions

The following rule is similar to the rule for checking su attempts. It checks incor-
rect login attempts on the Telnet server port.

alert tcp $TELNET_SERVERS 23 -> $EXTERNAL_NET any (msg:"TELNET login
incorrect"; content:"Login inco

rrect"; flow:from_server,established; reference:arachnids,127;
classtype:bad-unknown; sid:718; rev:6;)

There is one additional keyword used in this rule which is “reference: arachnids,
127”. This is a reference to a web site where you can find more information about this
vulnerability. The URLs for external web sites are placed in the reference.con-
fig file in the Snort distribution. Using the information in reference.config, the
URL for more information about this rule is http://www.whitehats.com/info/IDS=127.
127 is the ID used for searching the database at the arachnids web site.

3.12 Writing Good Rules
There is a large list of predefined rules that are part of Snort distribution. Looking at
these rules gives you a fairly good idea of how to write good rules. Although it is not
mandatory, you should use the following parts in the options for each rule:

• A message part using the msg keyword.
• Rule classification, using the classification keyword.

References 129

• Use a number to identify a rule with the help of the sid keyword.
• If the vulnerability is known, always use a reference to a URL where more

information can be found using the reference keyword.
• Always use the rev keyword in rules to keep a record of different rule versions.

In addition, you should always try to write rules that are generalized and are able
to detect multiple variations of an attack. Usually bad guys use the same tools with little
modifications for different purposes. Good rules can and should be able to detect these
variations.

3.13 References

1. Classless Inter-Domain Routing or CIDR. RFC 1519 at http://www.rfc-edi-
tor.org/rfc/rfc1519.txt

2. Transmission Control Protocol RFC 793 at http://www.rfc-editor.org/rfc/
rfc793.txt

3. User Datagram Protocol RFC 768 at http://www.rfc-editor.org/rfc/rfc768.txt
4. The nmap at it web site http://www.nmap.org
5. The Internet Protocol RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt
6. The Internet Control Message Protocol at http://www.rfc-editor.org/rfc/

rfc792.txt
7. Assigned Numbers RFC 1700 at http://www.rfc-editor.org/rfc/rfc1700.txt
8. Oinkmaster at http://www.algonet.se/~nitzer/oinkmaster/
9. Open NMS at http://www.opennms.org

10. Internet Corporation for Assigned Names and Numbers (ICANN) at http://
www.icann.org

11. The arachnids web site at http://www.whitehats.com/info/IDS
12. The securityfocus mailing list archive at http://online.securityfocus.com/

archive/1

131

C H A P T E R 4

Plugins,
Preprocessors and
Output Modules

reprocessors and output modules are two important parts of Snort
architecture. Preprocessors process received data packets before

rules are applied to them. Output modules control output generated from
Snort’s detection mechanism. The flow of a packet through Snort is
shown in Figure 4-1 where a packet is captured and then passed through
preprocessors first. After that, the packet goes to the Snort detection
engine where Snort rules are applied on the packet. As a result of applica-
tion of Snort rules, if an alert or log message is generated, output proces-
sors or plug-ins operate on that output. The output of configured output
modules is then used by the security administrators.

Snort allows you to select which preprocessors and output modules
should be enabled. From a user standpoint, this is done through the Snort
configuration file snort.conf. Preprocessors and Output modules are
also called plug-ins in some literature. So for the sake of this book “input
plug-in”, “input module” and “preprocessor” mean the same thing. Simi-
larly, “output plug-in” and “output module” mean the same thing. This
chapter provides information about these components and their internal
working. This information will help you write good rules for Snort.

P

132 Chapter 4 • Plugins, Preprocessors and Output Modules

4.1 Preprocessors
When a packet is received by Snort, it may not be ready for processing by the main
Snort detection engine and application of Snort rules. For example, a packet may be
fragmented. Before you can search a string within the packet or determine its exact size,
you need to defragment it by assembling all fragments of the data packet. The job of a
preprocessor is to make a packet suitable for the detection engine to apply different
rules to it. In addition, some preprocessors are used for other tasks such as detection of

Figure 4-1 Simplified block diagram for Snort.

Preprocessors 133

anomalies and obvious errors in data packets. A detailed description of available pre-
processors will show how they work.

During the installation process, you can compile support of different preproces-
sors into Snort. Configuration parameters for different preprocessors (also called input
plug-ins and input modules) are present in the snort.conf file. Using the file, you
can enable or disable different preprocessors.

All enabled preprocessors operate on each packet. There is no way to bypass some
of the preprocessors based upon some criteria. If you have enabled a large number of
preprocessors, you may slow down Snort detection process. Therefore you should be
careful when enabling preprocessors.

All preprocessors are enabled in the Snort configuration file using the preproces-
sor keyword. The general format of enabling a preprocessor is as follows:

preprocessor <name of preprocessor>[: parameters]

The name of the preprocessor follows the preprocessor keyword. For example, the
following line in snort.conf file enables frag2 preprocessor:

preprocessor frag2

Usually preprocessors also accept parameters to configure different options for the
preprocessors. These parameters are usually optional. Mandatory parameters will be
specified explicitly in this text. Widely used preprocessors are discussed next.

You can write your own preprocessors. The information is available in
README.PLUGINS in the doc directory of Snort source code. You can also find sam-
ple code in the templates directory of the source code tree.

4.1.1 HTTP Decode

The Hyper Text Transfer Protocol (HTTP) allows intrusion detection systems to
use hexadecimal characters in URI to defeat known attacks. For example, this can be
done by inserting something like %3A%2F%2F in the URI to replace :// characters. The
HTTP decode preprocessor normalizes the HTTP requests so that they can be processed
properly by the detection engine. You can use a list of ports used by HTTP servers or
proxy servers as an argument to the preprocessor. The following line in the configura-
tion file will apply HTTP decode for packets coming to ports 80, 8080, 443.

preprocessor http_decode: 80 8080 443

A large number of attacks on web servers are carried by obfuscating URI charac-
ters using hexadecimal numbers in the URI. The HTTP decode blocks any such
attempts by converting them to the actual URI. For example, if you have written a Snort

134 Chapter 4 • Plugins, Preprocessors and Output Modules

rule to attempt access to “/wwwboard/passwd.txt”, an attacker can defeat the rule by
using hexadecimal characters in the request. So if the attacker sends a request to get
URI “%2Fwwwboard%2Fpasswd.txt”, the Snort rule will not detect the attack because
the rule is looking for “/wwwboard/passwd.txt”. However, if you are using HTTP
decode preprocessor, this attempt can detected.

4.1.2 Port Scanning

Port scanning is a process of finding out which ports are open on a particular host
or all hosts on a network. The first step in any intruder activity is usually to find out
what services are running on a network. Once an intruder has found this information,
attacks for known vulnerabilities for these services are tried. The portscan preprocessor
is designed to detect port scanning activities. The preprocessor can be used to log the
port scanning activities to a particular location in addition to standard logging. Hackers
can use multiple port scanning methods. Refer to man pages or documentation of the
nmap utility (http://www.nmap.org/) to learn more about port scanning methods. The
nmap utility is a widely used tool for port scanning.

The following is the general format of the preprocessor used in the snort.conf
file.

preprocessor portscan: <address> <ports> <time period> <file>

There are four arguments to the preprocessor.

• The address range of IP addresses to monitor is a single IP address or a network
address. The range is specified using the CIDR block.

• The number of ports accessed within a certain time period can be specified.
For example, a number 5 means that if five ports are scanned within the time
period specified, an alert is generated.

• The time period is the number of seconds that defines the time period used for
threshold.

• The path of the file name where the activity should be logged.

The following line in the Snort configuration file is used to detect port scanning on
network 192.168.1.0/24 and to log activity in /var/log/snort/portscan.log
file.

preprocessor portscan: 192.168.1.0/24 5 10 \
 /var/log/snort/portscan.log

Preprocessors 135

In the example, number 5 is the number of scanning attempts and number 10 is the
time period. If five port scan attempts are detected within ten seconds, the preprocessor
will generate an alert.

The port scanning activity is detected both for TCP and UDP ports. The prepro-
cessor is able to detect both normal and stealth port scans. For information on stealth
port scans, please see the nmap web site. A brief description of port scanning methods
is presented below:

• TCP connect port scanning. In this method, the attack tries to connect to a
number of ports using standard TCP connect methods. If connection is
established, it shows the port is open.

• The SYN scan method sends a TCP packet to a port with SYN flag set. In
response the attacker looks for a TCP packet with both SYN and ACK flags set.
If the packet is received, the port is open. However if a TCP packet with RST
flag set is received, it shows the port is closed.

• NULL port scanning method, FIN port scanning, and XMAS port scanning
methods are almost similar. A TCP packet is sent and either a RST packet is
received or no packet is received. If a RST packet is received, the port is closed.
If no packet is received, there is a probability that the port is open.

• In the UDP port scanning method, UDP packets are sent. If an ICMP port
unreachable packet is received, the port is closed. Otherwise there is a
probability that the port is open.

You can also use another preprocessor in conjunction with this preprocessor. This
preprocessor is portscan-ignorehosts, which can be used to ignore some hosts if any
port scanning activity is detected from them. The following line in the configuration file
will ignore two hosts, 192.168.1.10 and 192.168.1.13.

preprocessor portscan-ignorehosts: 192.168.1.10/32 \

 192.168.1.13/32

We have used 32 in the CIDR block number to specify a single host. The portscan-
ignorehosts preprocessor is useful when you use some host on your own network for
periodic vulnerability assessment.

4.1.3 The frag2 Module

This preprocessor does IP packet defragmentation. Old versions of Snort used
another preprocessor named defrag. The frag2 preprocessor uses a splay tree algorithm,

136 Chapter 4 • Plugins, Preprocessors and Output Modules

which is a self-organizing data structure. For configuration, use and administration of
Snort, you need not understand this algorithm.

With frag2, you can configure timeout and memory limits for packet defragmenta-
tion. By default, the preprocessor uses 4 MB of memory and a 60-second timeout
period. If a packet assembly is not successful within this time period, previously col-
lected fragments are discarded. The following command enables the preprocessor with
default values.

preprocessor frag2

The following command configures the preprocessor with 2MB memory and a
timeout period of 30 seconds.

preprocessor frag2: 2097152, 30

On high-speed networks, you should use large amounts of memory since a large
number of data packets may be fragmented. RFC 791 describes the fragmentation and
reassembly process in detail. The link to this RFC is found at the end of the chapter.

4.1.4 The stream4 Module

Stream4 is a replacement for the Stream module used in older versions of Snort. It
provides two basic functions:

1. TCP stream reassembly
2. Stateful inspection

You must configure two preprocessors in the snort.conf file for Stream4 to
work properly. These modules are “stream4” and “stream4_reassemble.” Both
of these take a number of arguments. If you don’t specify an argument, a default value
is used instead. The general format of stream4 preprocessor is as follows:

preprocessor stream4: [noinspect], [keepstats], \
 [timeout <seconds>], [memcap <bytes>], [detect_scan], \
 [detect_state]

Here is a brief explanation of the arguments to the preprocessor and their default
values:

noinspect Turns off stateful inspection (default: ACTIVE)

keepstats Records session summary in session.log file
(default: INACTIVE)

timeout Timeout for keeping a stream in active state (default: 30
seconds)

Preprocessors 137

The general format of the stream4_reassemble preprocessor is as follows:

preprocessor stream4_reassemble: [clientonly],

 [serveronly],[noalerts],[ports<portlist>]

Here is a brief explanation of arguments to stream4_reassemble preprocessor:

Snort-type attacks can be detected and/or ignored with this preprocessor. For more
information, see http://www.sec33.com/sniph/.

4.1.5 The spade Module

Detailed information about Statistical Packet Anomaly Detection Engine
(SPADE) is available at http://www.silicondefense.com/software/spice/index.htm. It is
used to detect general packet anomalies in IP packets and a number of preprocessor
keywords are associated with it. They are listed in commented form in the default
snort.conf configuration file that comes with Snort distribution. SPADE keeps a
record of history data and uses threshold values to report anomalies. For a detailed dis-
cussion, please see the README and Usage links on the web site mentioned above.

You should keep in mind some efficiency and memory requirements for SPADE.
It can take a lot of memory to keep SPADE’s statistical data and significant processing
power may be required on high-load networks.

memcap Maximum amount of memory used by the module
(default: 8 MB)

detect_scan Detects port scan activity (default: INACTIVE)

detect_state_problems Detects miscellaneous problems related to TCP streams
(default: INACTIVE)

clientonly Reassembles client side stream data packets.

serveronly Reassembles server side stream data packets.
noalerts Don’t alert for insertion or evasion type attacks.

ports List of ports for which streams will be assembled. The
port numbers should be separated by a space character.
The keyword “all” will enable reassembly on port num-
bers 21 (FTP), 23 (Telnet), 25 (SMTP), 53 (DNS), 80
(HTTP), 110 (POP3), 111, 143, and 513. The port feature
is very useful if you want to enable reassembly for only a
few services. It saves CPU time.

138 Chapter 4 • Plugins, Preprocessors and Output Modules

4.1.6 ARP Spoofing

Address Resolution Protocol (ARP) is used to find a MAC address when an IP
address is known. ARP is needed when a host wants to send an IP packet to another
host on the local network. The sending host broadcasts an ARP packet on the network
asking, “Who has this IP address?” The host who has that IP address will respond with
its MAC address. After that, the sending host will send the data packet (usually called a
frame at the link layer level) to the destination host.

The ARP protocol is used by many people for various attacks, sniffing and spoof-
ing. For example, see the dsniff package at http://www.monkey.org/~dugsong/dsniff/
which exploits the ARP. By spoofing, someone can redirect network traffic for a host to
some other location.

The arpspoof preprocessor detects anomalies in ARP packets. Specifically it does
the following:

• For all ARP requests, if source MAC address and sender’s MAC address are
different, an alert is generated. If the source MAC address in the packet does
not match the MAC address associated with source IP address, then an alert is
generated. For details on ARP packet header, refer to Appendix C.

• For ARP replies, source MAC address is compared to sender’s MAC address.
Similarly, destination MAC address is compared to receiver’s MAC address.
An alert is generated if these entries mismatch.

• For unicast ARP requests, if destination MAC address is not the broadcast
address (FF:FF:FF:FF:FF:FF), an alert is generated. To check this anomaly,
you need to place a line in snort.conf file as “preprocessor
arpspoof: -unicast”.

• You can pre-populate MAC Address/IP Address pairs in Snort internal cache.
The preprocessor will compare these pre-populated entries with information in
the received ARP packets. In case of mismatch, an alert will be generated. For
example, if the MAC address for a particular IP address in ARP replies does not
match the pre-populated pair, an alert is generated.

The following entry in the Snort configuration file (snort.conf) will configure
this preprocessor and will detect unicast anomalies:

preprocessor arpspoof: -unicast

The following line adds an IP address and MAC address pair which can be used
later on to detect ARP spoofing attempts.

Output Modules 139

preprocessor arpspoof_detect_host: 192.168.1.13 \

 34:45:fd:3e:a2:01

If in any ARP packet these two addresses don’t match, an alert will be generated.
You can use multiple lines in the configuration file to create many similar pairs.

4.2 Output Modules

Output modules are used to control the output from Snort detection engine. By default,
the output from alerts and logs go into files in the /var/log/snort directory. Using
output modules, you can process output and send output messages a number of other
destinations. Commonly used output modules are:

• The database module is used to store Snort output data in databases.

• The SNMP module can be used to send Snort alerts in the form of traps to a
management server.

• The SMB alerts module can send alerts to Microsoft Windows machines in the
form of pop-up SMB alert windows.

• The syslog module logs messages to the syslog utility. Using this module you
can log messages to a centralized logging server.

• You can also use XML or CSV modules to save data in XML or comma
separated files. The CSV files can then be imported into databases or
spreadsheet software for further processing or analysis.

Output modules can be defined in the Snort configuration file and some of them
can also be configured on the command line as well. The general format for defining
the output module inside the configuration file is as follows:

output <module_name>[: arguments]

For example, if you want to log messages to MySQL database called “snort” using
database user name “rr” and password “rr” located on the same machine where Snort is
running, you use the following line in snort.conf file.

output database: log, mysql, user=rr password=rr \

 dbname=snort host=localhost

However when you use an output module in the configuration file, alerts will not
go into the alert file. Once you place this line in the snort.conf file, all alerts will go
into the MySQL database. There are ways to send alerts to multiple destinations.

140 Chapter 4 • Plugins, Preprocessors and Output Modules

N O T E In addition to the above line, you also need to configure MySQL database
and create tables. Discussion about this process is the subject of the next chapter.

Another example of using output modules is as follows. This line in the
snort.conf file will cause alerts to be sent as SMB pop-up windows to a list of
hosts located in the workstation.list file.

output alert_smb: workstation.list

Sometimes you may want to send alerts to multiple locations. Defining your own
action using the ruletype keyword is a good idea. For example, the following lines in the
snort.conf file will define an action type called “smb_db_alert” that will cause
alerts to be sent to both the database and SMB pop-up windows for rules that use this
action type.

ruletype smb_db_alert
{
 type alert
 output alert_smb: workstation.list
 output database: log, mysql, user=rr password=rr \
 dbname=snort host=localhost
}

The following rule uses this new action type. Alerts generated by this rule will go
to MySQL database as well as to the Windows machine in the form of pop-up windows.

smb_db_alert icmp any any -> 192.168.1.0/24 any \
 (fragbits: D; msg: "Dont Fragment bit set";)

You can also use command line options with some output modules. For example,
you can use -s option to log alerts to Syslog.

4.2.1 The alert_syslog Output Module

Syslog is a system logging daemon available on almost all UNIX systems. It uses
a configuration file /etc/syslog.conf where you can define different parameters
to determine what happens when a message for a defined facility is received. A detailed
discussion of Syslog is beyond the scope of this book and you should refer to the man-
ual pages of syslogd and syslog.conf.

The alert_syslog module allows you to send alerts to the syslog facility. The
Syslog daemon can also be used to forward alerts to some other host as well if you need
centralized logging. The following is the general format for using this module.

output alert_syslog: <facility> <priority> <options>

Output Modules 141

Facility names that can be used with this module are:

• LOG_AUTH
• LOG_AUTHPRIV
• LOG_DAEMON
• LOG_LOCAL0
• LOG_LOCAL1
• LOG_LOCAL2
• LOG_LOCAL3
• LOG_LOCAL4
• LOG_LOCAL5
• LOG_LOCAL6
• LOG_LOCAL7
• LOG_USER

Priorities that are available with this module are:

• LOG_EMERG
• LOG_ALERT
• LOG_CRIT
• LOG_ERR
• LOG_WARNING
• LOG_NOTICE
• LOG_INFO
• LOG_DEBUG

Note that LOG_EMERG is the highest priority and LOG_DEBUG is the lowest
priority. Options that you can use with this module are:

• LOG_CONS
• LOG_NDELAY
• LOG_PERROR
• LOG_PID

Note that you have to configure Syslog daemon on your host to properly utilize
this module. On Linux systems, read the manual pages for sysklogd for a detailed dis-
cussion of how to configure and use the daemon. The configuration is done through the

142 Chapter 4 • Plugins, Preprocessors and Output Modules

use of /etc/syslog.conf file on UNIX systems. A typical syslog.conf file on
RedHat Linux 7.3 system follows. As you can see from this file, a log file is defined for
each type of facility. Most of the messages go into /var/log/messages files.

Log all kernel messages to the console.

Logging much else clutters up the screen.

kern.* /dev/console

Log anything (except mail) of level info or higher.

Don't log private authentication messages!

*.info;mail.none;news.none;authpriv.none;cron.none /var/
log/messages

The authpriv file has restricted access.

authpriv.* /var/log/secure

Log all the mail messages in one place.

mail.* /var/log/maillog

Log cron stuff

cron.* /var/log/cron

Everybody gets emergency messages

*.emerg *

Save news errors of level crit and higher in a special file.

uucp,news.crit /var/log/spooler

Save boot messages also to boot.log

local7.* /var/log/boot.log

#

INN

#

news.=crit /var/log/news/news.crit

news.=err /var/log/news/news.err

news.notice /var/log/news/news.notice

If you want to send different types of alerts using different facilities or priorities,
you can define your own actions using the ruletype keyword as mentioned earlier. After
defining these rule types, you can use them in your rules as actions. As you will remem-
ber from previous discussions, the first word in each rule is the action part.

Output Modules 143

4.2.2 The alert_full Output Module

The alert_full module logs full alert messages in a file. The following line
will log all alert messages to alert_detailed file under the Snort logging directory.

output alert_full: alert_detailed

However keep in mind that full logging has its own disadvantages as well. Espe-
cially in high-speed networks, enabling full alerts consumes a significant amount of
time to log data into a file, causing some packets to be ignored by the detection engine.

Note that as mentioned earlier, you can log messages to multiple destinations
using a new action type. The following lines in snort.conf file define an action type
“multi”. When this action type is used in any rule, the message will be sent as SMB
pop-up window on hosts listed in workstation.list file as well as to a file
alert_detailed.

ruletype multi
{
 type alert
 output alert_smb: workstation.list
 output alert_full: alert_detailed
}

4.2.3 The alert_fast Output Module

Like alert_full, alert_fast also takes as an argument a file name for storing data. It
is fast compared to full alerting. Packet headers are not saved in the alert file. The fol-
lowing line in the snort.conf file enables one-line alert messages to be stored in
alert_quick file.

output alert_fast: alert_quick

This mode is useful for high-speed intrusion detection applications of Snort.

4.2.4 The alert_smb Module

SMB alerts are sent to Microsoft Windows-based workstations using the smb-
client program which is part of the SAMBA client package on Linux machines. To
send these alerts, the smbclient must be present in the PATH variable.

SMB alerts are displayed on Windows machines as pop-up windows as shown in
Figure 4-2. A list of workstations should be present in a file that is provided as an argu-
ment to the output module. The following line in snort.conf file will cause alert
messages to be sent to workstations listed in file workstation.list.

output alert_smb: workstation.list

144 Chapter 4 • Plugins, Preprocessors and Output Modules

Each workstation name should be listed in workstation.list file on a sepa-
rate line. Note that these are the SMB names, not IP addresses or DNS hostnames. The
SMB names of workstations are configured in Control Panel on Windows machines.
The smbclient program resolves these SMB names by itself.

You have to compile the SMB alert support when building Snort using the config-
ure script. A typical line to build this support is:

./configure --prefix=/opt/snort --enable-smbalerts

Refer to Chapter 2 for more information about how to compile Snort. The messen-
ger service must be enabled on the Windows system for pop-up windows to be dis-
played.

4.2.5 The log_tcpdump Output Module

This module is used to store alert data in a tcpdump format file that can be viewed
later on using tcpdump or some other tool. This method is quick for heavily loaded
networks where you want to offload processing from the Snort system and analyze data
using some other mechanism. Following is the general format for using this module in
snort.conf file.

output log_tcpdump: <filename>

Typical entries in the snort.conf file may look like the following:

output log_tcpdump: /var/log/snort/snort_tcpdump.log

In Snort 1.8 and older, Month, Data and Time are pre-pended to the file name so
that you can have multiple files every time you restart Snort. In Snort 1.9, the seconds
counter1 is appended to the file name. Each time you start Snort, a new file is created.

1. In fact, the time() function is used in Snort 1.9.0 to determine this number. For more information,
use the “man 2 time” command in Linux.

Figure 4-2 SMB alert display window.

Output Modules 145

Some typical names of files created by using this line in snort.conf file in Snort 1.9
are:

snort_tcpdump.log.1039971287
snort_tcpdump.log.1039971389

If you use the file command to determine the type of the files created by Snort, an
output like the following will be displayed.

[root@conformix]# file /var/log/snort/
snort_tcpdump.log.1039971287
/var/log/snort/snort_tcpdump.log.1039971287: tcpdump capture
file (little-endian) - version 2.4 (Ethernet, capture length
1514)
[root@conformix]#

This output shows that this file is in rcpdump format. Now you can display the
contents of this file (the captured data) using the tcpdump command as follows:

[root@conformix]# tcpdump -v -r /var/log/snort/
snort_tcpdump.log.1039971287

11:55:03.163301 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 269 (ttl 150, id 0, len 297)

11:55:03.166078 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 325 (ttl 150, id 1, len 353)

11:55:03.168592 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 253 (ttl 150, id 2, len 281)

11:55:03.170912 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 245 (ttl 150, id 3, len 273)

11:55:03.173415 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 289 (ttl 150, id 4, len 317)

11:55:03.175796 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 265 (ttl 150, id 5, len 293)

11:55:03.178429 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 319 (ttl 150, id 6, len 347)

11:55:03.181288 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 317 (ttl 150, id 7, len 345)

11:55:03.183845 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 321 (ttl 150, id 8, len 349)

11:55:03.186581 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok]
udp 313 (ttl 150, id 9, len 341)

[root@conformix]#

This is especially useful if you want to create log files in binary format and then
use tcpdump to analyze the log files later.

146 Chapter 4 • Plugins, Preprocessors and Output Modules

4.2.6 The XML Output Module

The Simple Network Modeling Language (SNML) is available for exporting
Snort alerts so they can be read and interpreted by any XML-based interpreter or
browser. Information about Snort XML plug-in is available at http://www.cert.org/kb/
snortxml/. At the time of writing this book, version 0.2 of SNML DTD is available from
this web site and is also available in Appendix E.

Using this plug-in, you can save XML data in a file on the local machine or send it
to a web server using HTTP or HTTPS protocols.

General format of using XML output plug-in is as follows:

output xml: [log | alert], [parameter list]

You can use either log or alert option with XML module. In case of alert, only
alert messages will be logged. Other parameters that can be used with this plug-in are
listed in Table 4-1.

Note that XML output is important for much web application development and for inte-
grating Snort into such systems. Some Snort XML parsers exist, including ACID-XML at http://
www.maximumunix.org, although these are still in their infancy.

Table 4-1 Parameters Used with XML Module

Parameter Description

File Stores data to an XML file.

Protocol Logs message to some other host using that protocol. Important protocols are HTTP,
HTTPS, and TCP. When you use HTTP protocol, you also need to specify a file
parameter. Data will be logged to the HTTP server using the POST method in the
specified file. If you want to use HTTPS protocol, you also need to provide file, cert,
and key parameters for secure logging. If you use TCP protocol, a server must be lis-
tening to a parrot specified with port parameter.

Host Defines remote host where data will be logged.

Port Defines the port number on the remote host where data will be logged. Default port
numbers for HTTP, HTTPS, and TCP are 80, 443, and 9000 respectively.

Cert This is the certificate to be used with HTTPS protocol. It is X.509 client certificate.

Key The client private key.

Ca The server certificate used for authentication.

Server The Common Name or CN for X.509 certificate.

Output Modules 147

4.2.6.1 Examples
Logging to a file “xmlout” on the local host:

output xml: log, file=xmlout

The date and time will be appended to the name of the file so that data can be
saved for multiple Snort sessions.

Logging to a file “xmlout” on host snort.conformix.com using HTTP protocol:

output xml: alert, protocol=http \
 host=snort.conformix.com file=xmlout

Logging to a file “xmlout” on host snort.conformix.com using HTTPS protocol:

output xml: alert, protocol=https \
 host=snort.conformix.com file=xmlout cert=conformix.crt \
 key=conformix.pem ca=ca.crt server=Conformix_server

Logging to a TCP server running on host snort.conformix.com and listening to
port number 5555:

output xml: alert, protocol=tcp \
 host=snort.conformix.com port=5555

Typical entries present in the output XML file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE snort-message-version-0.2>

<file>

 <event version="1.0">

 <sensor encoding="hex" detail="full">
 <interface>eth0</interface>

 <ipaddr version="4">192.168.1.2</ipaddr>
 <hostname>conformix.conformix.net</hostname>
 </sensor>

 <signature>ICMP Packet with TTL=100</signature>
 <timestamp>2002-07-23 17:48:31-04</timestamp>

 <packet>
 <iphdr saddr="192.168.1.100" daddr="192.168.1.2" proto="1" ver="4"

hlen="5" len="60" id="37123" ttl="100" csum="519">
 <icmphdr type="8" code="0" csum="23612">

<data>6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869</data>

 </icmphdr>

 </iphdr>
 </packet>
 </event>

</file>

148 Chapter 4 • Plugins, Preprocessors and Output Modules

You need an XML parser and a DTD file to interpret data logged into the XML file.
You can also load data files in your XML enabled web browser as shown in Figure 4-3.

Figure 4-3 The XML output file in Microsoft Internet Explorer.

Output Modules 149

There are a few things that you can do in Internet Explorer with XML documents.
For example, if you want to hide the packet details, you can click on the hyphen charac-
ter; all details for the packet will be hidden and the hyphen character will be replaced by
the plus character. This is shown in Figure 4-4. To display the details again, you can
click on the plus character.

Figure 4-4 Hiding details in Microsoft Internet Explorer.

150 Chapter 4 • Plugins, Preprocessors and Output Modules

The plus and the hyphen character can be clicked in all places on the XML docu-
ment to hide or reveal details about a particular section of the XML document. For
more information on XML, you can consult any of the available texts or go to the XML
web site at http://www.xml.org.

4.2.7 Logging to Databases

Databases are used with Snort to store log and alert data. Logging data to files in
the disk is fine for smaller applications. However, keeping log data in disk files is not
appropriate when you have multiple Snort sensors or you want to keep historical data as
well. Databases also allow you to analyze data generated by Snort sensors. For exam-
ple, if you want to find the top 15 alerts that are generated most frequently, you can use
SQL statements for the database. Finding the same information from log files is diffi-
cult. Similarly, if you want to find the most active attackers in the month of November
2002, it is very easy to find out that information from a database.

You can use multiple types of databases with Snort including Oracle and MySQL.
Using the database is discussed in detail in the next chapter. For the sake of complete-
ness of discussion about output modules, consider the following line.

output database: log, mysql, user=rr password=rr \
 dbname=snort host=localhost

This line configures MySQL to be used as the database running on the same
machine where Snort is running. All messages are logged to the database named “snort”
which you need to create manually before you can start using it. Snort will access this
database using user name “rr” and password “rr”. Note that rr is not a UNIX user, it is a
database user. You have to create this user name and password yourself as well. Refer to
Chapter 5 for details about how to configure MySQL database for use with Snort.

The general format for using the database is as follows:

output database: <log | alert>, <database_type>, \

 <parameter_list>

The database type is mysql, postgressql, oracle and so on. List of parameters that
can be used is shown in Table 4-2. Parameters are separated with a space character in
the configuration file (snort.conf). Most of these parameters are optional.

Output Modules 151

To enable support of databases, you need to compile Snort with database support
enabled. The following configure script enables MySQL database support in Snort.

./configure --prefix=/opt/snort --with-mysql=/usr/lib/mysql

Refer to Chapter 2 for details on how to build Snort.

4.2.8 CSV Output Module

Comma-separated text files are sometimes useful when you want to import data
into other software packages like databases and spreadsheets, e.g., Microsoft Excel.
Using the CSV output module, you can save output data to a CSV file. The general for-
mat of the CSV file is as follows:

output csv: <filename> <formatting_options>

The file is created in the logging directory which is /var/log/snort by
default. Formatting options are used to define what information should be stored in the
CSV file and in what order. If you use the keyword “default” in the formatting
option, all parameters about the alert are stored in the file.

output csv: csv_log default

Table 4-2 List of Parameters for the Database

Parameter Description

host Host where database server is running.

port Port number used by the database server.

dbname Name of the database.

user Name of the database user.

password Password for the user. If you don’t want to use a password, you can omit this param-
eter (a bad idea!).

sensor_name Name of the sensor used by Snort. This is useful when many Snort sensors are log-
ging to the database and later on you want to know which alert is related to a partic-
ular sensor. This name is also used by tools like ACID to distinguish different
sensors.

detail You can use either full or fast detail. By default full detail is saved to the database.

encoding You can use ASCII, hex, or base64 encoding for data.

152 Chapter 4 • Plugins, Preprocessors and Output Modules

The output file generated after using this line in snort.conf file is something
like the following:

07/23-18:24:03.388106 ,ICMP Packet with
TTL=100,ICMP,192.168.1.100,,192.168.1.2,,0:2:3F:33:C6:98,0:E0:29:89:
28:59,0x4A,,,,,,100,0,51367,60,20,8,0,,

07/23-18:25:51.608106 ,GET
matched,TCP,192.168.1.2,1060,192.168.10.193,,0:E0:29:89:28:59,0:6:25
:5B:29:ED,0x189,***AP***,0x55BCF404,0x8CBF42DD,,0x16D0,64,0,35580,37
9,20,,,,

07/23-18:25:52.008106 ,GET
matched,TCP,192.168.1.2,1061,192.168.10.193,,0:E0:29:89:28:59,0:6:25
:5B:29:ED,0x1D0,***AP***,0x55628967,0x8D33FB74,,0x16D0,64,0,63049,45
0,20,,,,

07/23-18:25:52.478106 ,GET
matched,TCP,192.168.1.2,1061,192.168.10.193,,0:E0:29:89:28:59,0:6:25
:5B:29:ED,0x1D0,***AP***,0x55628B01,0x8D33FC1B,,0x1920,64,0,63051,45
0,20,,,,

07/23-18:25:52.708106 ,GET
matched,TCP,192.168.1.2,1061,192.168.10.193,,0:E0:29:89:28:59,0:6:25
:5B:29:ED,0x1EF,***AP***,0x55628C9B,0x8D33FCC1,,0x1D50,64,0,63053,48
1,20,,,,

Each line in the output consists of fields as listed in Table 4-3.

Table 4-3 CSV Options

Name Description

Timestamp Time stamp including date and time.

Msg Message which is taken from the msg option of the rule.

Proto Protocol.

Src Source IP address.

Srcport Source port number. No port number is present in ICMP packets.

Dst Destination IP address.

Dstport Destination port.

ethsrc Source Ethernet address.

ethdst Destination Ethernet address.

ethlen Length of Ethernet frame.

tcpflags If the protocol is TCP, this part contains TCP flags.

tcpseq TCP sequence number in TCP packets.

tcpack TCP acknowledgement number.

Output Modules 153

You can use only a few of these options in the CSV file as required. The following
line in snort.conf will record only timestamp, msg, source, and destination IP
addresses.

output csv: csv_log timestamp,msg,src,dst

The log entries will look like the following:

07/23-19:31:27.128106 ,GET matched,192.168.1.2,192.168.10.193

07/23-19:31:27.278106 ,GET matched,192.168.1.2,192.168.10.193

4.2.9 Unified Logging Output Module

Unified output is good for high-speed logging. You can have alerts and logs going
into separate files. The general format of these modules is as follows:

output alert_unified: filename <alert_file>, \

 limit <max_size>
output log_unified: filename <log_file>, \

 limit <max_size>

The size of the file is expressed in Mbytes. You should enable both alert and log
files to keep a complete record of data because the alert file does not contain detailed
information about the packets. The following is an example of enabling unified output
from Snort. These two lines in the snort.conf file enable unified output.

tcplen TCP length.

tcpwindow TCP window size.

ttl TTL value in the IP header.

tos Type of Service field of IP header.

id Packet ID.

dgmlen Datagram length.

iplen Length part in the IP header.

icmptype Type field in ICMP header.

icmpcode Code part in ICMP header.

icmpid ID part of ICMP header.

icmpseq ICMP sequence.

Table 4-3 CSV Options (continued)

Name Description

154 Chapter 4 • Plugins, Preprocessors and Output Modules

output alert_unified: filename unified_alert, limit 50
output log_unified: filename unified_log, limit 200

If no path is specified, the files are created in /var/log/snort directory. In
the above example, the alert file will not grow more than 50 MBytes and the maximum
size of the log file will be 200 MBytes. The number of seconds as returned by the time()
function are added at the end of file name so that when you restart Snort, new files are
created. Some typical names for alert and log files are:

unified_alert.1039992424
unified_log.1039992424

Unified log files are in binary format and you can use utilities to view these. For
simple hexadecimal display, you can use the hexdump utility on Linux. Barnyard is
another tool for this purpose. Refer to the Barnyard web site at http://sourceforge.net/
projects/barnyard/. This tool is discussed in Chapter 6 also.

4.2.10 SNMP Traps Output Module

The SNMP traps output module is very useful to send alerts as SNMP traps to a
centrally managed network operations center. Snort SNMP output module can generate
both SNMPv2 and SNMPv3 traps. The general format of SNMPv2 trap is as follows:

output trap_snmp: alert, <sensor_ID>, {trap|inform} \
 -v <snmp_version> -p <port_number> <hostname> <community>

The following line sends SNMP version 2C traps to host 192.168.1.3 on port 162,
which is the standard port for SNMP traps. The community name used is “public”.

output trap_snmp: alert, 8, trap -v 2c -p 162 \
 192.168.1.3 public

You should modify community to a different string. “Public” is the default com-
munity name and is known to everyone in the SNMP world. Refer to the example lines
provided in snort.conf file for SNMP version 3 traps.

To enable SNMP support in Snort, you have to compile it into Snort at the time
you run the configure script. The following configure script command line can be used
for this purpose.

./configure --prefix=/opt/snort --with-snmp --with-openssl

You also need to compile OpenSSL support in Snort. Refer to Chapter 2 for more
information about how to build Snort.

Using BPF Fileters 155

4.2.11 Log Null Output Module

This output plug-in causes alert entries not to be logged. For example, you can
create a rule type to send SNMP traps without logging these messages. However, I
would not recommend using it. You should always have a record of alerts so that if you
want to take any action against intruders, you have some evidence of the IDS activities.

4.3 Using BPF Fileters
Berkley Packet Filter (BPF) is a mechanism of filtering data packets at the data

link layer level. These filters are extensively used with the tcpdump program to filter
data that you want to capture. You can use BPF filters with Snort as well. When using
BPF filters, Snort rules are applied only to those packets that pass BPF filters. This way
you can save some CPU time by not applying Snort rules to packets that are of no inter-
est. For example, the BPF filters can be used to compare a particular byte from the start-
ing offset of the IP header, TCP header or UDP header.

You can place BPF filters in a file and use that file on the command line when
starting Snort. Let us suppose you want to apply Snort only on packets for which the
Type of Service (TOS) field in the IP header is not equal to 0. The TOS field is the sec-
ond byte in the IP header. For this purpose, you can create a file bpf.txt with the follow-
ing line in it:

ip[1] != 0

Number 1 is the offset starting from the IP header part of the data packet. The off-
set starts from 0, so byte number 1 is the TOS field. For the structure of the IP header,
refer to Appendix C.

After creating this file, you can use the following command line to start Snort to
enable the filter.

snort -F bpf.txt -c /opt/snort/etc/snort.conf

Only those packets in which the TOS field has some value other than 0 will reach
Snort detection engine. A TOS value equal to 0 shows normal data traffic and any other
value is used for high priority data packets.

156 Chapter 4 • Plugins, Preprocessors and Output Modules

4.4 References

1. Classless Inter-Domain Routing or CIDR. RFC 1519 at http://www.rfc-edi-
tor.org/rfc/rfc1519.txt

2. Transmission Control Protocol RFC 793 at http://www.rfc-editor.org/rfc/
rfc793.txt

3. The nmap at it web site http://www.nmap.org
4. The Internet Protocol RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt
5. The Internet Control Message Protocol at http://www.rfc-editor.org/rfc/

rfc792.txt
6. The nmap utility at http://www.nmap.org/
7. Simple Network Markup Language SNML info at http://www.cert.org/kb/

snortxml/
8. Barnyard at http://sourceforge.net/projects/barnyard/
9. ACID_XML at http://www.maximumunix.org

10. XML at http://www.xml.org
11. Snot at http://www.sec33.com/sniph/

157

C H A P T E R 5

Using Snort with
MySQL

ll systems need some type of efficient logging feature, usually
using a database at the backend. Snort can be made to work with

MySQL, Oracle or any other Open Database Connectivity (ODBC) com-
pliant database.1 You already know from the discussion of output modules
in the previous chapter that you can save logs and alerts to a database.
Logging to a database is very useful for maintaining history data, generat-
ing reports and analyzing information. By using other tools like Analysis
Control for Intrusion Detection (ACID), discussed in the next chapter, you
can get very useful information from the database about attack patterns.
For example, you can get a report about the last fifteen unique attacks,
information about hosts that are continuously attacking your network, the
distribution of attacks by different protocols, and so on.

Since MySQL is a freely available database and works perfectly well on
Linux and other operating systems, this is a natural choice for Snort.
Some different scenarios for using a database with Snort are:

• You can install and run the MySQL database server on the same machine where
Snort is running, as shown in Figure 5-1.

1. ODBC provides a standard way for clients to connect to a database. Refer to ODBS FAQ at http://
www.ensyncsolutions.com/odbc_faq.htm or http://www.odbc.org for more information.

A

158 Chapter 5 • Using Snort with MySQL

• You can also install the MySQL server on a different machine and configure
Snort to log to that database, as shown in Figure 5-2.

• You can have multiple Snort sensors to log to a centralized database server
running MySQL server, as shown in Figure 5-3.

Figure 5-1 A single computer running Snort and MySQL database server.

Figure 5-2 A computer running Snort logging to a separate MySQL database server.

159

The scheme you choose depends on your particular requirements. For example, if
you are running only one sensor and don’t have any pre-existing database server, it is a
natural choice to install the database on the Snort machine itself. However if you have
many Snort machines, it makes sense to set up a centralized database server as shown in
Figure 5-3.

If you are running a separate database server and are logging to it from remote
Snort machines, you can send data without any security or you can use some type of
encryption. A possible scheme using the Stunnel package is discussed at the end of this
chapter. Using Stunnel, you can encrypt all data between the Snort machine and the
database server. This system also helps to pass data through firewalls, because you can
use the ports that are already open in the firewall with Stunnel.

Before you start logging to MySQL database, you have to create a database on the
database server for Snort. After creating the database, you have to create tables where
Snort data is logged. The table schema used with the database is available from http://
www.incident.org/snortdb/ for your review. However, you don’t need to create tables
manually because Snort comes with a script that will do the entire job for you. To work
with MySQL, you may have to recompile Snort with MySQL support, as will be
explained later in this chapter.

Figure 5-3 Many Snort PCs logging data to a centralized MySQL database server.

160 Chapter 5 • Using Snort with MySQL

After going through this chapter, you should be able to install Snort and MySQL
so that all of the Snort activity is logged to the database. You should also be able to set
up a centralized database server and enable multiple Snort machines to log to this
server. The last part of this chapter provides information about using the Stunnel packet
for secure data exchange between Snort machine and a remote database server.

5.1 Making Snort Work with MySQL
There are a few basic steps to make Snort work with MySQL. A high level step-

by-step approach to build a Snort-MySQL system follows. Details of each step will be
presented later in the chapter.

1. Compile Snort with MySQL support and install it. Make sure that Snort is
working properly by creating some alert messages. You have to use --with-
mysql command line argument with the configure script as mentioned in
Chapter 2.

2. Install MySQL and use mysql client to make sure the database is available.
See Appendix C for basic information about how to get started with MySQL.

3. Create a database on the MySQL server for Snort. I have named this database
“snort.” You may choose any name for the database. This is explained later in
this chapter.

4. Create a user name and password in the database. The user name will be used
by Snort to log data.

5. Create tables in this database using scripts that came with Snort distribution in
the contrib directory.

6. Modify the snort.conf file to enable the database plug-in as explained later.
You will use the database name, user name and password for the database that
you just created.

7. Restart Snort. If everything goes well, Snort will start logging to the database.
8. Generate some alerts and use the mysql client program to make sure that

alerts are being logged into the database.

The rest of the chapter will provide explanations about how to perform all of these
steps. The next chapter discusses the use of ACID, which will make real use of the work
that you do in this chapter.

Making Snort Work with MySQL 161

5.1.1 Step 1: Snort Compilations with MySQL Support

Snort must be compiled with --with-mysql if you want to use MySQL data-
base with Snort. This is done with the help of the configure script as explained in
Chapter 2. A typical configure script command line follows:

 ./configure --prefix=/opt/snort --with-mysql=/usr/lib/mysql

When you run the configure script, I would recommend adding support for other
components such as SNMP, which is very useful. MySQL libraries must be present in
/usr/lib/mysql directory for successful compilation. Refer to Chapter 2 for
details.

5.1.2 Step 2: Install MySQL

I would suggest installing the MySQL database packages that come with RedHat
or other Linux distributions. MySQL is also available for Microsoft Windows plat-
forms. This is the easiest way to install the database. However you can also download
MySQL database server and client software in the source code form from its web site at
http://www.mysql.org and compile and install it yourself. However, this is recom-
mended only for very experienced users.

5.1.3 Step 3: Creating Snort Database in MySQL

Once you have compiled Snort with MySQL support, the next step is to create
MySQL database where Snort can log data. Before you start using MySQL, make sure
that MySQL server is running on the machine that is being used as the database server.
You can use ps –ef | grep mysql command for this purpose. If this command
shows MySQL processes, it means that the server is running. If you are using a single
machine, you can have the database server running on the machine where Snort is
installed. As mentioned earlier, you can also have a separate database server. For the
purpose of this book, I have used a single machine and all components including Snort
and MySQL server are installed on it.

You can download and install the latest MySQL server from http://
www.mysql.org web site or get the RPM package that is part of your RedHat installa-
tion disk. For people running Snort on Microsoft Windows machines, it is better to get
the binary installable package. You can use the root database user to create the
snort database and grant needed privileges to the rr user.

The mysql client program is used to connect to the database server. You can use
any name for the Snort database and any name for the user to access this database. For
the purpose of this book, we are creating a database named “snort” and a user “rr”

162 Chapter 5 • Using Snort with MySQL

to access this database. Assuming MySQL server is running on localhost, a typical
mysql session to create the database and check its status is as follows:

[root@laptop]# mysql -h localhost -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40 to server version: 3.23.36

Type 'help;' or '\h' for help. Type '\c' to clear the buffer

mysql> create database snort;
Query OK, 1 row affected (0.00 sec)

mysql> use snort
Database changed
mysql> status

mysql Ver 11.13 Distrib 3.23.36, for redhat-linux-gnu (i386)

Connection id: 41
Current database: snort
Current user: root@localhost
Current pager: stdout
Using outfile: ''
Server version: 3.23.36
Protocol version: 10
Connection: Localhost via UNIX socket
Client characterset: latin1
Server characterset: latin1
UNIX socket: /var/lib/mysql/mysql.sock
Uptime: 1 hour 56 min 29 sec

Threads: 1 Questions: 107 Slow queries: 0 Opens: 14 Flush
tables: 1 Open tables: 7 Queries per second avg: 0.015

mysql>

The following commands are used in this session:

• The command “mysql -h localhost -u root –p ” is used to connect
mysql client to a database server running on localhost. The “-u root”
part shows the database user name used to connect to the database. The “-p”
part is used to enter user password on the next line. A welcome message is
displayed after login and you get the “mysql>” prompt where you can issue
other commands.

Making Snort Work with MySQL 163

• The command “create database snort;” creates a new database in the
MySQL server with the name “snort”. You can use any name of your choice
for the database.

• The “use snort” command is used to start using the newly created database.
• The “status” command shows current status of the database server. It shows

that the currently opened database is “snort.”

To end the mysql client session, you can use the “exit” command at the
MySQL prompt.

5.1.4 Step 4: Creating MySQL User and Granting Permissions to
User and Setting Password

Using the database user root to access the Snort database is not recommended.
For this purpose, you will create a new user “rr”. The next command creates a user
with name rr. The same command also grants the following permissions to all tables in
the snort database we recently created.

• CREATE, used to create new objects
• INSERT, used to insert data into the database
• DELETE, used to delete data from the database
• UPDATE, used to modify records
• SELECT, used to display and select records

We shall use this user to access the Snort database. This user name and password
are also used in the snort.conf file when you configure output database module.

mysql> grant CREATE,INSERT,DELETE,UPDATE,SELECT on snort.* to
rr@localhost;

Query OK, 0 rows affected (0.00 sec)

mysql>

The permission for this newly created user is granted only for the database Snort.
A single command creates the user and grants permission.

Now you need to assign a password to this user. The following command assigns a
password “rr78x” to this user.

mysql> set password for rr = password('rr78x');
Query OK, 0 rows affected (0.00 sec)

mysql>

164 Chapter 5 • Using Snort with MySQL

This password is used in the snort.conf file along with the user name with
MySQL output module configuration. You have now set values for the following fields
of the MySQL output plug-in in snort.conf file:

• Database name, which is snort

• Database user name which is rr

• Database user password which is rr78x

• The host where database server is running, which is the same machine where
Snort is installed. If both Database server and Snort are running on the same
machine, you will use “localhost” as the host name.

5.1.5 Step 5: Creating Tables in the Snort Database

After creating a database user and a Snort database, you now have to create the
tables required to store data in the database. Fortunately you can use the script
create_mysql in the contrib directory and it will create all of the necessary
tables for you. The contrib directory is present when you download Snort in the
source code form from its web site http://www.snort.org and extract its source files. The
create_mysql script is present along with other useful stuff in this directory. For
example, scripts to create database schema in other types of database servers are also
found in this directory.

The following command uses this script to create all database tables in the snort
database.

[root@laptop]# mysql -h localhost -u rr -p snort < contrib/
create_mysql

Enter password:

[root@laptop]#

Different command line options are used with this command.

• The “-h localhost” part of the command is used to tell the mysql client
that the database server is running on the same machine as the client.

• The “-u rr” part is used to specify database user name to log into the
database server. This is the same user that you created previously.

• The “-p” part shows that you will enter the password for user rr in the next
line.

• The “snort” part of the command line shows that the database that will be
used to create tables is “snort.”

Making Snort Work with MySQL 165

• The last part “<contrib./create_mysql” specifies a file name and
shows that mysql client will read commands from this file.

To display what tables have been created, use the following session:

[root@laptop]# mysql -h localhost -u rr -p snort
Enter password:
Reading table information for completion of table and column
names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 46 to server version: 3.23.36

Type 'help;' or '\h' for help. Type '\c' to clear the buffer

mysql> show tables;

+------------------+
| Tables_in_snort |
+------------------+
| data |
| detail |
| encoding |
| event |
| icmphdr |
| iphdr |
| opt |
| reference |
| reference_system |
| schema |
| sensor |
| sig_class |
| sig_reference |
| signature |
| tcphdr |
| udphdr |
+------------------+
16 rows in set (0.00 sec)

mysql>

The “show tables” command lists all the tables in the currently open database.
There are sixteen tables created in the table by the create_mysql script as listed
above. The first table name in the list is data and the last one in the list is udphdr.
Each of these tables keeps part of the information about Snort activity.

166 Chapter 5 • Using Snort with MySQL

• The data table contains the payload for each packet that triggers an alert.
• The detail table contains information about how much detail is logged with a

packet. By default it has only two rows. The first row is “fast” and the second
one is “full”. You can think of this information as the logging mode described
in previous chapters.

• The encoding table shows the types of encoding used when logging data
packets. By default it contains three types of logging: hex, base64 and ASCII.

• The event table lists all events and stores a timestamp for these events.
• The icmphdr table contains information about the ICMP header of packets that

are logged into the database. It contains information including ICMP type,
ICMP code, ICMP ID, ICMP sequence number and so on. For more
information about ICMP headers, refer to RFC 792 and Appendix C.

• The iphdr table contains all fields of the IP header for logged data packets. The
information includes source and destination IP addresses, IP protocol version, IP
header length, type of service (TOS) value, time to live (TTL) value and so on.
More information about IP headers can be found in RFC 791 and Appendix C.

• The opt table contains options.
• The reference and reference_system tables contain information about reference

sites used to get more information about a vulnerability. This is the same
information that is used inside Snort rules using the ref keyword as discussed in
Chapter 3.

• The schema tables shows the version of database schema.
• The sensor table contains information about different sensors that are logging

data to the Snort database. If there is only one Snort sensor, the table contains
only one row. Similarly, the table contains one row for each sensor.

• The sig_class contains information about different classes of Snort rules as
discussed in Chapter 3. As an example, it contains entries like “attempted-
recon”, “misc-attack” and so on.

• The sig_reference table links signatures to different online reference sites.
• The signature table contains information about signatures that generated alerts.
• The tcphdr table contains information about the TCP header of a packet, if the

logged packet is of TCP type. For more information about TCP header, refer to
RFC 793 and Appendix C.

• The udphdr table contains information about UDP header part of the packet if
the logged packet is of UDP type. This information contains UDP source and
destination ports, length and checksum. For more information about UDP
header, refer to RFC 768 and Appendix C.

Making Snort Work with MySQL 167

If you are wondering about the structure of each table, you can display different
fields in each table. The following command shows the structure of the iphdr table:

mysql> describe iphdr;
+----------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+----------------------+------+-----+---------+-------+
sid	int(10) unsigned		PRI	0	
cid	int(10) unsigned		PRI	0	
ip_src	int(10) unsigned		MUL	0	
ip_dst	int(10) unsigned		MUL	0	
ip_ver	tinyint(3) unsigned	YES		NULL	
ip_hlen	tinyint(3) unsigned	YES		NULL	
ip_tos	tinyint(3) unsigned	YES		NULL	
ip_len	smallint(5) unsigned	YES		NULL	
ip_id	smallint(5) unsigned	YES		NULL	
ip_flags	tinyint(3) unsigned	YES		NULL	
ip_off	smallint(5) unsigned	YES		NULL	
ip_ttl	tinyint(3) unsigned	YES		NULL	
ip_proto	tinyint(3) unsigned			0	
ip_csum	smallint(5) unsigned	YES		NULL	
+----------+----------------------+------+-----+---------+-------+
14 rows in set (0.00 sec)

mysql>

For people who want to go into details of how data is stored, database schema pro-
vides great information. You can view complete database schema at http://www.inci-
dent.org/snortdb/.

5.1.5.1 Creating Extra Tables
When you are using some other programs with database and Snort to map service

numbers to service names, additional mapping information is needed. For example,
TCP port 23 is used for Telnet. However the tcphdr table contains only the port number,
not the textual description. If you want to display source and destination ports as text
“Telnet port” instead of “23”, you need this information. Snort comes with an addi-
tional script that adds more tables and populates them with this information. To create
these extra tables, get snortdb-extra.zip file in the contrib directory and
unzip it. Use the following command to create the additional tables and add data to
them.

[root@laptop]# mysql -h localhost -u rr –p snort < contrib/
snortdb-extra
Enter password:
[root@laptop]#

168 Chapter 5 • Using Snort with MySQL

The command creates three tables, protocols, services, and flags. These tables
contain descriptive information for different protocols, services and flags. The script
also populates the tables with data. A description of these tables is provided in the
snortdb-extra script. The list of new tables follows:

mysql> show tables;

+------------------+
| Tables_in_snort |
+------------------+
| data |
| detail |
| encoding |
| event |
| flags |
| icmphdr |
| iphdr |
| opt |
| protocols |
| reference |
| reference_system |
| schema |
| sensor |
| services |
| sig_class |
| sig_reference |
| signature |
| tcphdr |
| udphdr |
+------------------+
19 rows in set (0.01 sec)

mysql>

There are now nineteen tables instead of sixteen. The services table is quite
large and it contains entries for 65535 services, both for TCP and UDP. The total
number of rows in this table is 131072 which makes it quite a big table. Creation of
this table may take a few seconds on the database server when you run the
snortdb-extra script.

5.1.5.2 Sample Entries in Snort Database Tables
To give you an idea of what type of entries are present in different tables in the

Snort database, let us select some items from the database and display them.
Following are some entries from table sig_class.

Making Snort Work with MySQL 169

mysql> select * from sig_class;
+--------------+--------------------------+
| sig_class_id | sig_class_name |
+--------------+--------------------------+
9	attempted-recon
8	misc-attack
7	bad-unknown
6	web-application-activity
+--------------+--------------------------+
4 rows in set (0.00 sec)

mysql>

The select command pulls out data from a database and displays it on the screen.
You can use the select command after connecting to database using the mysql client.
For more information on MySQL commands, refer to Appendix B.

The following are some records in reference_system table.

mysql> select * from reference_system;
+---------------+-----------------+
| ref_system_id | ref_system_name |
+---------------+-----------------+
8	nessus
7	cve
6	arachnids
5	bugtraq
+---------------+-----------------+
4 rows in set (0.02 sec)

mysql>

The following output of the select command shows records in encoding table.

mysql> select * from encoding;
+---------------+---------------+
| encoding_type | encoding_text |
+---------------+---------------+
0	hex
1	base64
2	ascii
+---------------+---------------+
3 rows in set (0.00 sec)

mysql>

The following output of the select command lists all entries in the services table
for port numbers between 20 and 30.

170 Chapter 5 • Using Snort with MySQL

mysql> select * from services where port<30 and port>20;

+------+----------+---------+-------------------------+
| port | protocol | name | description |
+------+----------+---------+-------------------------+
21	6	ftp	File Transfer [Control]
21	17	ftp	File Transfer [Control]
22	6	-	Unassigned
22	17	-	Unassigned
23	6	telnet	Telnet
23	17	telnet	Telnet

24	6	-	Unassigned
24	17	-	Unassigned
25	6	smtp	Simple Mail Transfer
25	17	smtp	Simple Mail Transfer
26	6	-	Unassigned
26	17	-	Unassigned
27	6	nsw-fe	NSW User System FE
27	17	nsw-fe	NSW User System FE
28	6	-	Unassigned

28	17	-	Unassigned
29	6	msg-icp	MSG ICP
29	17	msg-icp	MSG ICP
+------+----------+---------+-------------------------+
18 rows in set (1.14 sec)

mysql>

5.1.6 Step 6: Modify snort.conf Configuration File

After configuring the database and creating tables and user, you need to edit the
snort.conf file. These lines in the file will enable logging of log messages to the
MySQL database:

output database: log, mysql, user=rr password=rr78x \
 dbname=snort host=localhost

In the above line, name of the database is snort and the MySQL server is run-
ning on localhost. The user for the database is rr and it has a password rr78x. If
the user has no password, the line should be like the following:

output database: log, mysql, user=rr dbname=snort \
 host=localhost

The database is located on MySQL server running on the localhost, the
machine where Snort is installed. If you have a separate database server, you can spec-
ify the name of the server on this line in the snort.conf file. For example, if the

Making Snort Work with MySQL 171

database server is not the same as where Snort is running, you can use the following
lines in the snort.conf file.

output database: log, mysql, user=rr password=rr78x \
 dbname=snort host=192.168.1.23

The MySQL database server for the above example is running on host
192.168.1.23. If many Snort sensors are installed and all of them are logging data to the
same database server 192.168.1.23, all of the sensors must have the same line in their
snort.conf files. The database server must be running before starting Snort.

5.1.7 Step 7: Starting Snort with Database Support

When you start Snort after database configuration, the starting message shows
what database is being used. The boldface lines show database related information.

[root@laptop]# /opt/snort/bin/snort -c /etc/snort/snort.conf
Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--
Decoding Ethernet on interface eth0
Initializing Preprocessors!
Initializing Plug-ins!
Initializing Output Plugins!
Parsing Rules file /etc/snort/snort.conf

+++
Initializing rule chains...
No arguments to frag2 directive, setting defaults to:
 Fragment timeout: 60 seconds
 Fragment memory cap: 4194304 bytes
Stream4 config:
 Stateful inspection: ACTIVE
 Session statistics: INACTIVE
 Session timeout: 30 seconds
 Session memory cap: 8388608 bytes
 State alerts: INACTIVE
 Scan alerts: ACTIVE
 Log Flushed Streams: INACTIVE
No arguments to stream4_reassemble, setting defaults:
 Reassemble client: ACTIVE
 Reassemble server: INACTIVE
 Reassemble ports: 21 23 25 53 80 143 110 111 513
 Reassembly alerts: ACTIVE
 Reassembly method: FAVOR_OLD

172 Chapter 5 • Using Snort with MySQL

Back Orifice detection brute force: DISABLED

Using LOCAL time

database: compiled support for (mysql)

database: configured to use mysql

database: user = rr

database: database name = snort

database: host = localhost

database: sensor name = 10.100.1.111

database: sensor id = 1

database: schema version = 105

database: using the "log" facility

886 Snort rules read...

886 Option Chains linked into 99 Chain Headers

0 Dynamic rules

+++

Rule application order: ->activation->dynamic->alert->pass-
>log

 --== Initialization Complete ==--

-*> Snort! <*-

Version 1.8.6 (Build 105)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

The name of the database, the name of user and the host where the database is
installed are all listed in the output. The schema version is saved in the schema table in
MySQL database.

5.1.8 Step 8: Logging to Database

After configuring the database properly, you should check if log and alert mes-
sages are being saved in the database tables. We use the following two rules for Snort to
test the database.

alert ip any any -> any any (ipopts: lsrr; msg: \

 "LSRR Options set"; logto: "test";)

alert icmp any any -> 192.168.1.0/24 any (fragbits: D; \

 msg: "Dont Fragment bit set";)

To test these rules, we use the following two commands on a Microsoft Windows
machine. I have used Windows XP Home Edition for the sake of experiment.

ping -n 1 -f 192.168.1.2

ping -n 1 -j 192.168.1.2 192.168.1.2

Making Snort Work with MySQL 173

The first command sends an ICMP echo packet with the don’t fragment (DF) bit
set and thus triggers the second rule. The second command sends an ICMP packet with
Loose Source Record Routing (lsrr) option set, which triggers the first rule. Both of
these commands create alert messages. The alert messages are recorded in the database
as you can see in different tables. For example, the icmphdr table contains ICMP head-
ers corresponding to these alert messages.

mysql> select * from icmphdr;

+-----+-----+-----------+-----------+-----------+---------+----------+

| sid | cid | icmp_type | icmp_code | icmp_csum | icmp_id | icmp_seq |

+-----+-----+-----------+-----------+-----------+---------+----------+

| 1 | 1 | 8 | 0 | 18780 | NULL | NULL |

| 1 | 2 | 0 | 0 | 20828 | NULL | NULL |

| 1 | 3 | 8 | 0 | 18524 | NULL | NULL |

+-----+-----+-----------+-----------+-----------+---------+----------+

3 rows in set (0.00 sec)

mysql>

In the output of the select command, different fields of the ICMP header are
present, including ICMP type and ICMP code. The signature table contains messages
and other options from these messages as shown below:

mysql> select * from signature;

+--------+-----------------------+--------------+--------------+---------+------
---+

| sig_id | sig_name | sig_class_id | sig_priority | sig_rev |
sig_sid |

+--------+-----------------------+--------------+--------------+---------+------
---+

| 1 | Dont Fragment bit set | 0 | NULL | NULL |
NULL |

| 2 | LSRR Options set | 0 | NULL | NULL |
NULL |

+--------+-----------------------+--------------+--------------+---------+------
---+

2 rows in set (0.00 sec)

mysql>

Note that the sig_name field in the signature table contains the same information
as you used in the “msg” part of the two Snort rules defined earlier. You can test other
tables as well. When you go to the next chapter and start using ACID, you will find out
that you don’t need to use the command line mysql client anymore. ACID provides a
web interface that can be used to view and manage tables on a web browser.

174 Chapter 5 • Using Snort with MySQL

5.2 Secure Logging to Remote Databases Securely
Using Stunnel

The MySQL database server is listening to port number 3306. If your database
server is not on the same machine where Snort is running, you have to log messages on
a remote database server. From a security point of view, you may want to encrypt traffic
between Snort and the database server. Stunnel or Secure Tunnel is an open source
package available from http://www.stunnel.org that provides you a secure tunnel
between two hosts.

Get the latest version from the web site and install it on both the Snort machine and
the database server. You have to run it on both the Snort machine (client) and the database
server to establish a tunnel. On the database server, use the following command:

stunnel -P/tmp/ -p stunnel.pem -d 3307 -r localhost:3306

If the stunnel directory is not present in the PATH variable, use the full path
name with the command. The command will redirect all incoming connections on port
3307 to port 3306 where MySQL server is listening.

On the Snort machine, use the following command:

stunnel -P/tmp/ -c -d 3306 -r SERVER_NAME:3307

Replace SERVER_NAME with the name or IP address of the server. This com-
mand will redirect all connection on local port 3306 (where MySQL database server is
supposed to listen to) to port number 3307 on the remote server.

The net effect is that Stunnel is getting all packets on local port 3306 and forward-
ing them to port 3306 on the remote host by using port number 3307 in a secure way.
Make sure that MySQL server is not running on the hosts where Snort is running
because MySQL server may already have occupied port 3306 and Stunnel will not be
able to bind to it.

After creating this setup, you can configure Snort so that it assumes that MySQL
database server is running on the local machine. In fact, Snort will think that MySQL
server is running locally but Stunnel will transfer all the communication to the remote
database server.

This setup is also very useful when you have many sensors logging to a central
database server.

N O T E You can log to a remote MySQL database without using Stunnel. Single or
multiple sensors can log to a central database server without the requirement of any
secure tunnel. Stunnel just provides security of your data while it goes from sensors
to the database server.

Snort Database Maintenance 175

5.3 Snort Database Maintenance

From time to time, you need to perform some operations on the database to keep it
running efficiently. Table optimization enhances the database efficiency. You can opti-
mize individual tables using the optimize command. The following command optimizes
the data table.

mysql> optimize table data;

+------------+----------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+------------+----------+----------+----------+

| snort.data | optimize | status | OK |

+------------+----------+----------+----------+

1 row in set (58.10 sec)

mysql>

You can create a script to optimize all tables. For this purpose, save the following
commands in a file optimize.sql.

optimize table data;

optimize table detail;

optimize table event;

optimize table icmphdr;

optimize table iphdr;

optimize table opt;

Use the following command to run this script:

mysql -h localhost -u rr -prr78x snort < optimize.sql

I have not used all table names in the script. You can use all table names by creat-
ing additional lines if you like.

You should set this command as a cron job to run everyday so that the database is
optimized every 24 hours.

5.3.1 Archiving the Database

If your database grows very large, you may want to archive it. One method is to
back up the database, drop it and recreate a new database. Another way is to back up the
existing data into archive tables and then clean these tables. Some scripts are available
at http://www.dirk.demon.co.uk/utils/ for this purpose. Please download the scripts
from this web site and read the text file that comes with them for more information.

176 Chapter 5 • Using Snort with MySQL

5.3.2 Using Sledge Hammer: Drop the Database

If you really want to create a new database and want to destroy all data in the cur-
rent database, you can drop it using the following command after connecting to the
database using mysql client.

drop database snort;

You can use the same procedure discussed earlier in this chapter to create a new
database. But do it only if you really know what you are doing. You have been warned!

5.4 References

1. Snort database schema at http://www.incident.org/snortdb/
2. MySQL at http://www.mysql.org
3. Stunnel is available from http://www.stunnel.org
4. ODBC FAQ at http://www.ensyncsolutions.com/odbc_faq.htm
5. ODBC project at http://www.odbc.org

177

C H A P T E R 6

Using ACID
and SnortSnarf
with Snort

nalysis Console for Intrusion Databases (ACID) is a tool used to
analyze and present Snort data using a web interface. It is written in

PHP. It works with Snort and databases like MySQL, as you have learned
in the last chapter, and makes information available in the database to the
user through a web server. In addition to Snort, the tool can be used with
other security-related products like firewalls and networking monitoring.

This chapter provides information about ACID and discusses how to
install it with MySQL and Snort to view and analyze the intrusion detec-
tion data logged by Snort into the database. You will go through a step-by-
step procedure to install ACID and use it. The graphical representation of
captured data is very useful for analysis purposes.

In addition to ACID, the chapter also provides basic information about
SnortSnarf, another tool that can be used with a web server. SnortSnarf is
able to parse Snort log files and generate HTML pages that can be viewed
using a web browser. I assume that you are able to install and run Apache
web server as well as MySQL database server, which are required in order
to use the tools discussed in this chapter.

A

178 Chapter 6 • Using ACID and SnortSnarf with Snort

6.1 What is ACID?
ACID consists of many Pretty Home Page (PHP) scripts and configuration files that
work together to collect and analyze information from a database and present it through
a web interface. A user will use a web browser to interact with ACID. You have to have
a web server, database server, PHP and some other tools installed on your system to
make it work. For the sake of this book, I am using a RedHat Linux 7.1 machine. I have
installed Apache web server, PHP, and MySQL, which are part of the RedHat distribu-
tion. The database is configured to work with Snort as explained in Chapter 5. The lat-
est version of ACID is available from http://www.cert.org/kb/acid/.

ACID offers many features:

1. Searching can be done on a large number of criteria like source and destination
addresses, time, ports and so on, as shown in Figure 6-7.

2. Packet viewing is used to view different parts of packet. You can view different
header parts as well as the payload. Refer to Figure 6-6 for an example of
ICMP packet.

3. Alerts can be managed by creating alert classes, exporting and deleting and
sending them to an e-mail address.

4. Graphical representation includes charts based upon time, protocol, IP
addresses, port numbers and classifications.

5. Snapshots can be taken of the alerts database. As an example, you can view
alerts for the last 24 hours, unique alerts, frequent alerts and so on. Refer to Fig-
ure 6-7 for detail on snapshots.

6. You can go to different whois databases on the Internet to find out who owns a
particular IP address that is attacking your network. You can then contact the
responsible person to stop it. The whois database contains information about
owners of domain names and IP addresses.

All of these facilities are available through the web browser. You point the web
browser to a URL to access ACID screens. For example, I can use http://www.confor-
mix.com/acid/ on my intranet site to view logs. The web pages are written in PHP. Sup-
port packages like GD library and PHPLOT are used to print graphs on the web pages.
PHP connects to the backend MySQL database to get and update data. For this purpose,
you have to provide the database user name and password.

The big picture of the whole system including Snort, MySQL, Web server, PHP
and web browser is shown in Figure 1-1 in Chapter 1. The following is a brief, step-by-
step description of what happens when an intruder attempts to get into your network.

Installation and Configuration 179

• An intruder tries to get into your network.
• A Snort sensor installed in your network detects intruder activity based on its

rules. It then uses information in the snort.conf file to log data into
MySQL database. You have to provide the database user name, password,
hostname or IP address of the database server and database name in
snort.conf file.

• A web server is installed where MySQL server is running.
• A user starts the browser, connects to the web server and starts requesting PHP

web pages.
• The PHP engine connects to the database using the database user name,

password, and database name and gets information from the database server.
• The web server processes this information and sends back a reply to the web

browser, where a user can view intrusion data.
• A user can then perform different operations on this data via the web pages.

The rest of this chapter describes how to install and configure all of these tools to
build a web-based user interface.

6.2 Installation and Configuration
Since ACID needs additional packages, like PHPLOT, GD library and so on, to work,
you need to make sure that everything is installed properly. Fortunately you can install
different components independently from each other in no particular order. The follow-
ing step-by-step process makes it easy to put everything in place.

• Install and test Snort. You have already done it in Chapter 2.
• Install and test MySQL. Please see Chapter 5 for reference. After installing

MySQL, you have to create a database and tables so that Snort can log its
activity into the database. After that you have to configure Snort using
snort.conf file so that it logs its data to the database server.

• Install Apache. I would suggest using the RPM package that is part of RedHat
installation media. You can also download the latest version of Apache web
server from http://www.apache.org.

• Download ACID from http://www.cert.org/kb/acid/ and uncompress it in
/var/www/html directory. This process creates a directory named acid
under /var/www/html directory. The Apache package that is part of the
RedHat distribution has its HTML files under /var/www/html directory.
Depending on your distribution, the directory may be different on your

180 Chapter 6 • Using ACID and SnortSnarf with Snort

machine. If you download Apache in source code form and compiled it
yourself, you can choose a particular directory for this purpose during the
compilation process. Just keep in mind that you have to install ACID under
the directory where Apache is looking for HTML files.

• Get and Install PHP. You can download it from http://www.php.net or you can
use the RPM package that is part of the RedHat distribution. Set
display_errors variable in /etc/php.ini to Off. If you are using a
precompiled or RPM version of Apache, PHP may already have been built into
it as a module.

• Get and install GD library from http://www.boutell.com/gd/. This is also
available on RedHat installation CDs in the RPM form and I would recommend
using the RPM file. It is installed as /usr/lib/libgd.so file.

• Download PHPLOT from http://www.phplot.com and uncompress it in /var/
www/html directory. This is used to create graphics in the web pages.

• Download ADODB from http://php.weblogs.com/adodb and install it in /var/
www/html directory. ADODB is an object oriented library written in PHP and
is used to connect to the database. ADODB Frequently Asked Questions (FAQ)
are available at http://php.weblogs.com/adodb_faq.

Let us carry out the process of installing these components. At this point I assume
that you have:

• Installed MySQL database server as discussed in the last chapter.
• Installed and configured Snort so that it logs data into the Snort database.
• Installed Apache, GD library, and PHP as part of RedHat Linux installation.

Now download and install the software as mentioned below:

• Download ACID file acid-0.9.6b21.tar.gz from http://www.cert.org/
kb/acid/ and put it in /opt directory.

• Download ADODB file adodb221.tgz from http://php.weblogs.com/adodb
and put it in /opt directory.

• Download PHPLOT file phplot-4.4.6.tar.gz from http://
www.phplot.com and put it in /opt directory.

• Move to /var/www/html directory.
• Use the command “tar zxvf /opt/acid-0.9.6b21.tar.gz.” This

will create a directory /var/www/html/acid and put all ACID files under it.

Installation and Configuration 181

• Use the cd command to go to /var/www/html/acid directory.
• Use the command “tar zxvf /opt/adodb221.tgz” to extract ADODB

files. The command will create a directory /var/www/html/acid/adodb
and put all ADODB files under this directory.

• Use the command “tar zxvf /opt/phplot-4.4.6.tar.gz” to
extract PHPLOT files. This will create a directory /var/www/html/acid/
phplot-4.4.6 and put all PHPLOT files under this directory.

• Create another database snort_archive using “create database
snort_archive;” command after starting mysql client using the
procedure described in Chapter 5. You have already created a database with the
name “snort” and a user with the name “rr” as discussed in Chapter 5. The
new snort_archive database is used by ACID to archive old data. The new
database is not required by Snort to log data. If you don’t want to archive old
data using ACID, you can skip this step and the next step as well.

• Grant permissions to user rr to manage snort_archive database using the
command “grant CREATE,INSERT,DELETE,UPDATE,SELECT on
snort_archive.* to rr@localhost;”.

• Create tables in this database using the command “mysql -u rr -p
snort_archive <contrib/create_mysql” as described in Chapter 5.

• Set display_errors variable in /etc/php.ini to Off.

Now you have to configure ACID so that it can interact with the MySQL data-
base. The configuration process also enables Snort to use the PHPLOT package. The
configuration process is simple and includes setting up different parameters in the
acid_conf.php configuration file which is located in the same directory where
you uncompressed the ACID files. For the examples in this book, the file is located in
the /var/www/html/acid directory. You have to put information about the fol-
lowing items in this file:

• Location of ADODB files. In our case this path is ./adodb. This is because
all ADODB files are located in adodb directory under the directory where
ACID files are located.

• Type of database server. For the example in this book the type of server is
“mysql”.

• MySQL database name for Snort log data.
• MySQL database server name or IP address.
• MySQL database user name and password.

182 Chapter 6 • Using ACID and SnortSnarf with Snort

• Name of the archive database if you are using one.
• Database server name where archive database is located. In our case both
snort and snort_archive databases are located on localhost.

• Database user name and password to access snort_archive database.
• Location of PHPLOT files. In our case this is ./phplot-4.4.6. This is

because all PHPLOT files are located in phplot-4.4.6 directory under the
directory where ACID files are located.

This information is present in the start of the acid_conf.php file. The typical
opening lines of this file in my installation are as follows:

<?php

$ACID_VERSION = "0.9.6b21";

/* Path to the DB abstraction library
 * (Note: DO NOT include a trailing backslash after the
 * directory)
 * e.g. $foo = "/tmp" [OK]
 * $foo = "/tmp/" [OK]
 * $foo = "c:\tmp" [OK]
 * $foo = "c:\tmp\" [WRONG]
 */
$DBlib_path = "./adodb";

/* The type of underlying alert database
 *
 * MySQL : "mysql"
 * PostgresSQL : "postgres"
 * MS SQL Server : "mssql"
 */
$DBtype = "mysql";

/* Alert DB connection parameters
 * - $alert_dbname : MySQL database name of Snort
 : alert DB
 * - $alert_host : host on which the DB is stored
 * - $alert_port : port on which to access the DB
 * - $alert_user : login to the database with
 : this user
 * - $alert_password : password of the DB user
 *
 * This information can be gleaned from the Snort database
 * output plugin configuration.
 */

Installation and Configuration 183

$alert_dbname = "snort";

$alert_host = "localhost";

$alert_port = "";

$alert_user = "rr";

$alert_password = "rr78x";

/* Archive DB connection parameters */

$archive_dbname = "snort_archive";

$archive_host = "localhost";

$archive_port = "";

$archive_user = "rr";

$archive_password = "rr78x";

/* Type of DB connection to use

 * 1 : use a persistant connection (pconnect)

 * 2 : use a normal connection (connect)

 */

$db_connect_method = 1;

/* Path to the graphing library

 * (Note: DO NOT include a trailing backslash after the
directory)

 */

$ChartLib_path = "./phplot-4.4.6";

Note that you have used the same user name, password, and database name as we
used in snort.conf file. The following is a description of data located in the
acid_conf.php file.

The following line in acid_conf.php file sets up the location of ADODB
files:

$DBlib_path = "./adodb";

The following line in acid_conf.php file sets up the type of database:

$DBtype = "mysql";

The following lines in acid_conf.php file set up the main Snort database
information where Snort logs its data:

$alert_dbname = "snort";

$alert_host = "localhost";

$alert_port = "";

$alert_user = "rr";

$alert_password = "rr78x";

184 Chapter 6 • Using ACID and SnortSnarf with Snort

The following lines in acid_conf.php file set up archive database information
where ACID archives data. This part is not necessary for Snort or ACID operation. It is
required only if you want to archive data using ACID.

$alert_dbname = "snort_archive";
$alert_host = "localhost";

$alert_port = "";
$alert_user = "rr";
$alert_password = "rr78x";

The following line in acid_conf.php file sets up the location of PHPLOT
files.

$ChartLib_path = "./phplot-4.4.6";

After going through this practice, make sure that Snort, MySQL server, and
Apache server are running. Now you are ready to start using the web interface of ACID.

6.3 Using ACID
If you have installed everything as mentioned above, you should be able to access
ACID by going to URL http:/<your_web_server>/acid/. My web server is running on IP
address 192.168.1.2, so I can go the URL http://192.168.1.2/acid/.

The first time you go to this URL, ACID needs to do some setup tasks and you
will see a web window like the one shown in Figure 6-1.

At this screen, click the Setup page link and you will move to the DB Setup page
shown in Figure 6-2.

In Figure 6-2, click the “Create ACID AG” link so that ACID can create its own
table to support Snort. ACID creates its own tables in the main Snort database and uses
these tables for its own housekeeping data. More discussion about ACID tables is pre-
sented later in this chapter. Figure 6-3 shows the result of creating these new tables.

As shown in Figure 6-3, you can click the “Main Page” link towards the bottom of
the page to go to the main ACID page. Web pages shown in Figures 6-1, 6-2 and 6-3
will not be displayed the next time you start using ACID.

Using ACID 185

Figure 6-1 Invoking ACID for the first time.

186 Chapter 6 • Using ACID and SnortSnarf with Snort

Figure 6-2 Creating ACID tables to existing database.

Using ACID 187

Figure 6-3 The result of creating additional tables in the Snort database to support ACID.

188 Chapter 6 • Using ACID and SnortSnarf with Snort

6.3.1 ACID Main Page

The ACID main page provides an overview of currently available data. It has dif-
ferent sections to display information in groups. You can view traffic profiles by differ-
ent protocols, get a snapshot of sensors, search data and so on, as shown in Figure 6-4.
You are encouraged to explore the different links found on this page.

Figure 6-4 ACID main page.

Using ACID 189

By clicking different links on the web page shown in Figure 6-4, you can view a
great deal of information.

• List of sensors that are logging data to the database.
• Number of unique alerts and their detail.
• Total number of alerts and their detail.
• Source IP addresses for the captured data. This shows who is trying to hack into

your network. By following the subsequent links, you can also find the owner
of the source IP address by looking up whois databases.

• Destination IP addresses for captured data.
• Source and destination ports.
• Alerts related to a particular protocol, like TCP alerts, UDP alerts and ICMP

alerts.
• Search alert and log data for particular entries.
• Most frequent alerts.
• Plot alert data, which is still experimental.

In the following screen shots, you will learn a few important things. But this is just
an overview of what ACID can do for you. The more time you spend using ACID, the
more you will learn about different methods of analyzing Snort data. As you learn new
things, you will appreciate how arranging Snort data in different ways makes a lot more
sense compared to just looking at log files.

6.3.2 Listing Protocol Data

From the main page, you can click on a protocol to get information about packets
logged for that particular protocol. Figure 6-5 shows a screen shot for ICMP protocol.
The bottom part of the screen shows the last fifteen individual packets that have been
logged into the database. You can click on any one of these lines at the bottom to find
out more details about a particular packet.

190 Chapter 6 • Using ACID and SnortSnarf with Snort

Figure 6-5 ICMP protocol data.

Using ACID 191

6.3.3 Alert Details

Figure 6-6 shows details about a particular ICMP packet that you would see when
you click on an alert as shown in Figure 6-5. As you can see, there are different sections
on the page. Each section displays a particular layer of the data packet. The topmost
section provides general information about the alert. The IP section displays all parts of
the IP header. The ICMP header displays ICMP data, followed by the payload. Payload
is displayed both in hexadecimal and ASCII text. Refer to Appendix C for information
about different protocol headers.

Figure 6-6 Alert detail.

192 Chapter 6 • Using ACID and SnortSnarf with Snort

Navigation buttons are provided in this window that can be used to move to next
and previous alerts. Different colors are used to indicate different headers of the packet,
which makes it very easy to understand visually.

6.3.4 Searching

One important feature of ACID is that it can be used to search the captured log
and alert data based on parameters such as:

• A particular sensor when you are using a central database to log data from
many Snort sensors.

• Time of alert using start and ending time. This is very useful if you want to look
at alerts that occurred within a specific period of time.

• Source and destination addresses.
• Different fields in the IP packet header.
• Transport layer protocols.
• String of data in the payload area of the IP packet.

If you look at the screen shot shown in Figure 6-7, you can see that searching for
data in the database is very easy. All the criteria that you specify in this screen are trans-
lated to a SQL statement that is passed to the MySQL database server. Results of your
query are displayed when you click the “Query DB” button.

For example, if you want to search all alerts for which the signature field contains
the string “ATTACK RESPONSE”, you can fill out information as shown in Figure 6-8.

The result of this search is shown in Figure 6-9, where all alerts containing this
string are displayed. You can click a particular alert line to find out more information
about that alert.

I would strongly recommend spending some time with the search methods of
ACID to get acquainted to it.

Snort can also be used to find fully qualified names for source and destination
addresses found in captured data. Figure 6-10 shows unique destination IP addresses
and hostnames. For the sake of this screen shot and to create some data in the database,
I had to use a rule that creates an alert for all outgoing HTTP requests. Of course it is
not intrusion activity, but it does provide some data in the Snort database.

Using ACID 193

Figure 6-7 Searching database using ACID.

194 Chapter 6 • Using ACID and SnortSnarf with Snort

Figure 6-8 Searching for all alerts that contain “ATTACK RESPONSE” string in the signature.

Using ACID 195

Figure 6-9 Result of query used in Figure 6-8.

196 Chapter 6 • Using ACID and SnortSnarf with Snort

Figure 6-10 Unique destination addresses for alerts in Snort database.

Using ACID 197

6.3.5 Searching whois Databases

To get whois information about a particular address, you can click on any address
and select a particular whois database, like American Registry for Internet Numbers
(ARIN) at http://www.arin.net. The response to such a query for IP address
66.236.16.52 is shown in Figure 6-11.

This information is very important for incident response. This is usually the first
step to finding out the owner of the attacking IP address and his/her contact number.
After finding this information, you can contact the owner to stop bad guys from probing
your network.

Figure 6-11 Response to whois query.

198 Chapter 6 • Using ACID and SnortSnarf with Snort

6.3.6 Generating Graphs

Generating graphs is still experimental in ACID at the time of writing this book. I
have included it for the sake of introducing this interesting feature. You can go to the
ACID main page where a link is provided to generate graphs. When generating graphs,
you can select data and type of graph. For example, you can generate a line or bar graph
for alerts in the last five days. Figure 6-12 shows a sample bar graph for the alert data.

ACID uses the PHPLOT package on the backend side to generate these graphs.
You can also use another package, JPGRAPH in place of PHPLOT. JPGRAPH has a
different licensing scheme and there may be some restrictions for using it in commer-
cial environment.

N O T E The functionality described in this section is just an overview of ACID
capabilities. In addition to the tasks presented here, you can also use ACID to
archive data, delete data from the database and so on.

6.3.7 Archiving Snort Data

You have created a new database called snort_archive in the previous sec-
tions to archive the data from the main Snort database. Using ACID, you can either
move alerts from the main database to the archive database or just copy them. For
example, if you want to move all alerts from the main database to the archive database,
click the number next to “Total Number of Alerts” on the main ACID page. The next
page displays all of the alerts in the database. If the number of alerts is more than 50,
then only the first 50 alerts are displayed. Now you can use the bottom part of the
screen to archive the alerts as shown in Figure 6-13. Note that only the bottom part of
the browser window is shown in this figure.

If you click the “Entire Query” button in Figure 6-13, all alerts will be moved to
the archive database. The result of this action is shown in Figure 6-14.

Using ACID 199

Figure 6-12 Graph of alert data.

200 Chapter 6 • Using ACID and SnortSnarf with Snort

Figure 6-13 Moving alerts to the archive database.

Figure 6-14 Result of moving alert data to archive database.

Using ACID 201

6.3.8 ACID Tables

When you start using ACID for the first time, it creates its own tables in the
Snort database. These tables are used for housekeeping functions of ACID. For exam-
ple, you can create new alert groups called (AG) in ACID and ACID keeps a record in
its own tables. This section shows a list of MySQL database tables before and after
configuring ACID. The following is a list of tables as they appear before using ACID
for the first time.

mysql> show tables;
+------------------+
| Tables_in_snort |
+------------------+
| data |
| detail |
| encoding |
| event |
| flags |
| icmphdr |
| iphdr |
| opt |
| protocols |
| reference |
| reference_system |
| schema |
| sensor |
| services |
| sig_class |
| sig_reference |
| signature |
| tcphdr |
| udphdr |
+------------------+
19 rows in set (0.01 sec)

mysql>

The following is a list of tables after the creation of ACID tables in the database.
The user name that was used for ACID must have permission to create new tables.
Refer to Chapter 5 for information about granting permissions.

202 Chapter 6 • Using ACID and SnortSnarf with Snort

mysql> show tables;
+------------------+
| Tables_in_snort |
+------------------+
| acid_ag |
| acid_ag_alert |
| acid_event |
| acid_ip_cache |
| data |
| detail |
| encoding |
| event |
| flags |
| icmphdr |
| iphdr |
| opt |
| protocols |
| reference |
| reference_system |
| schema |
| sensor |
| services |
| sig_class |
| sig_reference |
| signature |
| tcphdr |
| udphdr |
+------------------+
23 rows in set (0.00 sec)

mysql>

The first four tables in the list show the newly created ACID tables.

6.4 SnortSnarf
SnortSnarf is another tool to display Snort data using a web interface. It is available
from its web site at http://www.silicondefense.com/software/snortsnarf/index.htm.
Basically it is a Perl script and you can run it after downloading without going through
any compilation process. It can parse Snort log files as well as extract data from
MySQL database. The following command parses /var/log/snort/alert file
and places the newly generated HTML files in the /var/www/html/snortsnarf
directory where they can be viewed later using a web browser.

snortsnarf.pl /var/log/snort/alert -d /var/www/html/snortsnarf

SnortSnarf 203

The following command extracts data from MySQL database running on the
localhost. It uses a user name rr and password rr78x to login to the database.

snortsnarf.pl rr:rr78x@snort@localhost -d /var/www/html/snortsnarf

To get data from a database, you have to define the following parameters on the
command line:

• Database user name
• Password
• Database name
• Host where database server is running
• Port number for the database server. By default the port number is 3306 and

this parameter is optional.

The general format of defining these parameters is:

user:passwd@dbname@host:port

You can run SnortSnarf from a cron script on a periodic basis. Figure 6-15 shows
the main page created by SnortSnarf. It provides basic information about alert data.

Figure 6-16 shows the information about a particular alert that is displayed when
you click a link as shown in Figure 6-15.

Figure 6-17 shows a screen shot for searching whois databases or DNS lookup
when you need to get more information about an IP address.

204 Chapter 6 • Using ACID and SnortSnarf with Snort

Figure 6-15 SnortSnarf main page.

SnortSnarf 205

Figure 6-16 Detail of a particular alert in SnortSnarf.

206 Chapter 6 • Using ACID and SnortSnarf with Snort

Figure 6-17 Getting more information about an IP address.

Barnyard 207

6.5 Barnyard
Barnyard is a new tool which is intended to parse binary log files generated by Snort
when you use the unified logging module. Barnyard is still in experimental form at the
time of writing this book. You can download the latest version from the Snort web site
and read the included file about installation and use of the tool. Basically you have to
carry out the following three steps to compile and install it.

1. Run the configure script with a prefix command line parameter to define the
directory where you intend to install it. A typical command line may be “con-
figure –-prefix=/opt/barnyard ”.

2. Run the make command.
3. Run the make install command to install it.

You also need to edit the barnyard.conf file before using the tool. I am omit-
ting a detailed discussion because the process may change significantly by the time you
read this book.

W A R N I N G At the time of writing this book, Barnyard is still in the development
process and the installation may differ significantly in the final release of the pack-
age.

6.6 References

1. ACID is available from http://www.cert.org/kb/acid/
2. Apache web site at http://www.apache.org
3. PHP web site at http://www.php.net
4. GD library at http://www.boutell.com/gd/
5. PHPLOT package at http://www.phplot.com
6. ADODB package at http://php.weblogs.com/adodb
7. SnortSnarf at http://www.silicondefense.com/software/snortsnarf/index.htm
8. ADODB FAQ at http://php.weblogs.com/adodb_faq

209

C H A P T E R 7

Miscellaneous Tools

t this point you have built your completely working Snort system
with database backend and web-based user interface. This chapter

introduces a few useful tools that you can use with this system to make
management simple and to enhance the capabilities of your system. You
will also learn how to make your system secure. These components are
briefly introduced below.

IDS Manager is a Microsoft Windows-based GUI tool to manage Snort
rules and the Snort configuration file snort.conf. Using this tool, you
can carry out different tasks like:

• Downloading the current configuration file snort.conf and rules from
an operational Snort sensor.

• Modifying the configuration file and rules.
• Uploading the modified configuration to the sensor.

Using IDS Manager, you can manage multiple Snort sensors. The only
catch is that it uses SSH server, which must be running on the Snort sensor.

SnortSam is another tool that can integrate Snort with firewalls. Using this
package with Snort, you can modify firewall configuration. The useful-
ness of this technique is still debatable as it may open up the firewall for
denial of service (DoS) attacks.

A

210 Chapter 7 • Miscellaneous Tools

Another topic discussed in this chapter is the security of the web server
where ACID is installed. Up to now you have not done anything to secure
the web server. Anybody can access the ACID console and delete the data
collected by Snort. Here you will learn a few methods of securing the web
server itself.

7.1 SnortSam

SnortSam is a tool used to make Snort work with most commonly used firewalls. It is
used to create a Firewall/IDS combined solution. You can configure your firewall auto-
matically to block offending data and addresses from entering your system when
intruder activity is detected. It is available from http://www.snortsam.net/ where you
can find the latest information. The tool consists of two parts:

1. A Snort output plug-in that is installed on the Snort sensor.

2. An agent that is installed on a machine close to Firewall or Firewall itself. Snort
communicates to the agent using the output plug-in in a secure way.

At the time of writing this book, the tools support the following firewalls:

• IP filter-based firewalls

• Checkpoint Firewall-1

• Cisco PIX

• Netscreen

The output plug-in, which is compiled with Snort, provides new keywords that
can be used to control firewall behavior. For compiling Snort, refer to Chapter 2.

In a typical scheme where you are using Checkpoint Firewall, you can run the
SnortSam agent on the firewall itself. Figure 7-1 shows a typical scheme where a Snort
sensor is controlling two Checkpoint firewalls. These firewalls may be running on
Linux, Windows or other UNIX platforms supported by Checkpoint.

In a typical situation where you don’t have a Checkpoint firewall, you will run the
agent on another system, located close to the firewall. Depending on the type of your
firewall, you will add plug-ins to the SnortSam agent to control a particular type of fire-
wall. For example, to control a Cisco router access list, you will use the relevant plug-in
available from the SnortSam web site. The scheme is shown in Figure 7-2 where the
sensor sends messages to the agent system where the SnortSam agent is running. The

SnortSam 211

Figure 7-1 Running SnortSam on Checkpoint Firewall.

Figure 7-2 Running SnortSam with a separate agent to control multiple firewalls.

212 Chapter 7 • Miscellaneous Tools

agent system will then update configuration of the firewall or routers depending on the
policy.

 Documentation, examples, and information about how to install SnortSam are
available on its web site. You can find information about the changes you need to make
for a particular type of firewall in the snort.conf file. You should think twice about
modifying firewall policy; it may lead to Denial of Service (DoS) attacks. For example,
if someone sends you a message resulting in the blocking of root name server
addresses, your DNS server will fail.

7.2 IDS Policy Manager
IDS policy manager is a Microsoft Windows based GUI. It is used to manage the Snort
configuration file and Snort rules on a sensor. It is available from its web site http://
activeworx.com/idspm/. At the time of writing this book, beta version 1.3 is available
from this web site and it supports Snort versions up to 1.9.0. You can download the soft-
ware and install it using normal Windows installation procedures. When you start the
software, a window like the one shown in Figure 7-3 is displayed.

As you can see, this window is initially empty. It has three tabs at the bottom, as
explained below:

• The “Sensor Manager” tab shows the sensors that you are managing with this
tool. Initially there is no sensor listed in the window because you have to add
sensors after installing IDS Manager. This is the default tab when you start the
Policy Manager.

• The “Policy Manager” tab shows configured policies. A policy includes
snort.conf file parameters (variables, input and output plug-ins, include
files) as well as a list of rules that belong to that policy.

• The “Logging” tab shows log messages.

You can click on any of these tabs to switch to a particular window. To add a new
sensor, you can click on the “Sensor” menu and chose the “Add Sensor” option. A pop-
up window like the one shown in Figure 7-4 appears where you fill out information
about the sensor.

IDS Policy Manager 213

Figure 7-3 IDS Policy Manager Window.

214 Chapter 7 • Miscellaneous Tools

The screen shot shown in Figure 7-4 is taken after filling out information in blank
fields. You have to enter the following information about a sensor:

• Sensor name, which is “MyHome Sensor” in this example.
• IP address of sensor which is 192.168.1.2. You have to fill out the IP address of

your sensor in this box.
• The “IDS System” box is used to specify which version of Snort is being used

on the sensor. Different Snort versions have slightly different parameters for
input and output plug-ins as well as keywords used in rules. It’s important to
use correct information in this option.

• The policy name is “Official”. You can use a different name for the policy. The
sensor policy is downloaded and stored on the machine where IDS Policy
Manager is being installed.

• The “Upload Information” section includes parameters that are needed to
transfer files from and to the sensor.

Figure 7-4 Adding a new sensor to IDS Policy Manager.

IDS Policy Manager 215

• The SCP method uses SSH server running on the sensor. User name and
password are used to log in to the Snort sensor to upload and download files. The
“Upload Directory” shows the location of the snort.conf file on the Snort
sensor. Since the location of other rule files is mentioned in the snort.conf
file, you don’t need to specify names and locations of other rule files.

After entering this information, you can click “OK” to add the sensor. After add-
ing the sensor, the first task is to download policy from the sensor you added in the pre-
vious step. For this purpose, you can use the “Download Policy from Sensor” option in
the “Sensor” menu. After downloading the policy, you can click on the “Policy Man-
ager” tab at the bottom of the screen to edit the policy. When you click here, you will
see the screen with a list of currently available policies. Since you used “Official” as the
name of the policy while adding the sensor, this policy must be present in the list.

To edit the policy, double click the policy name and a Policy Editor window will
appear, as shown in Figure 7-5.

Figure 7-5 The Policy Editor window with list of rules.

216 Chapter 7 • Miscellaneous Tools

On the left hand side of the window shown in Figure 7-5 is a list of different
classes of rules used on the sensor. The right hand side of the window shows a descrip-
tion of the class and individual rules included in that class. To modify a rule, you can
double click that rule and a window like the one shown in Figure 7-6 will appear where
you can modify different parts of a rule.

The pull-down menus in the right side of the window shown in Figure 7-6 make it
very easy to modify rules. For example, to modify protocol used in the rule, you can
click the pull-down menu button and a list of supported protocols will appear.

To modify other parts of the snort.conf file, you can click the “Settings” tab
on the top left side of the window. A window like the one shown in Figure 7-7 appears
where you can modify input and output plug-ins and values of different variables.

As you can see in the screen shot in Figure 7-7, the database user name and pass-
words are displayed. These are the same ones we used in Chapter 5 while configuring
the MySQL database.

After making changes to the policy, you can close this window. Now you can
upload it to the sensor using options in the “Sensor” menu of the main menu.

IDS Policy Manager makes it very easy to modify sensor policies. It does almost
all of the tasks that are discussed in Chapter 3 and Chapter 4.

Figure 7-6 Modifying a rule in IDS Policy Manager.

Securing the ACID Web Console 217

7.3 Securing the ACID Web Console
As you have seen in Chapter 6, ACID is a very useful tool for viewing and managing
data generated by the Snort sensors. However, there is one issue that is not yet
resolved—security of ACID. If the web server running ACID is not secure, anybody
can go to the ACID web pages and modify, archive, and delete data in the database
using ACID. As you have seen, the user name and password are hard coded in the
ACID configuration file acid_conf.php and the person viewing ACID web pages
does not need to know the database user name and password to delete information from
the database. There are multiple methods that you can adopt to achieve security.

7.3.1 Using a Private Network

There are different ways to make ACID secure. One way is to use a private net-
work for all Snort sensors and the centralized database server where ACID and Apache
are installed so that their IP addresses are not visible from the Internet. This scheme is
still vulnerable to the internal users who have access to this private network.

Figure 7-7 The Policy Editor window with snort.conf settings.

218 Chapter 7 • Miscellaneous Tools

7.3.2 Blocking Access to the Web Server on the Firewall

Another method is to block access to your web server from the firewall so that
nobody from the Internet can access the web server. Again this scheme is still vulnera-
ble to internal users.

7.3.3 Using iptables

Another way is to use iptables to allow only your own computer to access port
80 on the web server. This is the most secure method because it protects your web
server and ACID from both internal and external users. You can use a simple command
to block all incoming connections except your own workstation, which has an IP
address 192.168.1.100.

iptables -A INPUT -s ! 192.168.1.100 -j DROP

The command is case sensitive. This command blocks all connections except ones
from host 192.168.1.100, which is your own workstation where you use the web
browser. This is not a comprehensive tutorial on how to use the iptables command.
You can either use the “man iptables” command to get more information about ipt-
ables-based firewalls or read Rusty’s guide for iptables at http://www.netfilter.org/unre-
liable-guides/packet-filtering-HOWTO/index.html.

Once you use the above command, nobody from any other host will be able to
access ANY service on the machine where you used this command. All existing con-
nections will be dropped. You are warned!

7.4 Easy IDS
Easy IDS is an integrated system available from http://www.argusnetsec.com for the
Linux operating system. It has all of the necessary components to build a complete IDS
quickly. These components are precompiled and configured for easy installation. The
package includes:

• Snort
• Apache Web server
• MySQL server
• ACID
• PHPLOT
• ADODB

References 219

The installation script installs all of these components and creates startup and
shutdown script links. This is a good choice for people who want to get something run-
ning quickly. At the time of writing this book, you have to ask for an evaluation CD
from the company to test it. It may be available for free download from the company
web site in the future.

7.5 References

1. SnortSam at http://www.snortsam.net/
2. Activeworx web site at http://activeworx.com/idspm/
3. Rusty’s Unreliable Guides at http://www.netfilter.org/unreliable-guides/
4. Easy IDS at http://www.argusnetsec.com

221

A P P E N D I X A

Introduction to
tcpdump

cpdump is a packet capture tool. It can grab packets flowing on the
network, match them to some criteria and then dump them on the

screen or into a file. It is available on most of the UNIX platforms. On
Linux machines, you need to be the root user to run tcpdump. If you save
the captured data in a file, you can view the file later using tcpdump.
Since Snort can also store data in the tcpdump format in files, it becomes
an interesting tool for many people to view Snort files that have been cre-
ated in the tcpdump format.

The typical output of the command when used on the command prompt without
any argument is as follows:

[root@conformix]# tcpdump
Kernel filter, protocol ALL, TURBO mode (575 frames), datagram packet

socket
tcpdump: listening on all devices
13:05:52.216049 eth0 < rr-laptop.6001 > dti414.1245: P

1578894642:1578894674(32) ack 3347166818 win 63520
<nop,nop,timestamp 453029 53292014> (DF)

13:05:52.216049 eth0 > dti414.1245 > rr-laptop.6001: . 1:1449(1448) ack
32 win 63712 <nop,nop,timestamp 53292021 453029> (DF)

13:05:52.216049 eth0 > dti414.1245 > rr-laptop.6001: P 1449:2045(596)
ack 32 win 63712 <nop,nop,timestamp 53292021 453029> (DF)

13:05:52.216049 eth0 < rr-laptop.6001 > dti414.1245: . 32:32(0) ack
2045 win 64240 <nop,nop,timestamp 453029 53292021> (DF)

T

222 Appendix A • Introduction to tcpdump

13:05:52.226049 eth0 > dti414.1245 > rr-laptop.6001: . 2045:3493(1448)
ack 32 win 63712 <nop,nop,timestamp 53292022 453029> (DF)

13:05:52.226049 eth0 > dti414.1245 > rr-laptop.6001: P 3493:4089(596)
ack 32 win 63712 <nop,nop,timestamp 53292022 453029> (DF)

13:05:52.226049 eth0 < rr-laptop.6001 > dti414.1245: . 32:32(0) ack
4089 win 64240 <nop,nop,timestamp 453029 53292022> (DF)

You can use a number of command line switches with the command. A list of
switches is available on the manual pages. The important switch to use with Snort is
-r <filename>, where filename is the file containing Snort data. Simple Snort log
files can’t be used with this option. Only the files that are created in the tcpdump for-
mat can be read by the command.

A P P E N D I X B
Getting Started with
MySQL
ySQL is probably the most popular open source database. It is
available for Linux and you can download and install it on your

Linux machine. The package is available in source code format as well as
binary files. The easiest way to install it is to download the RPM file and
install it on your Linux machine. I have used RedHat Linux 7.1 on my
machine and installed the MySQL package that came with it.

MySQL has two basic parts, the server and the utilities used to administer
the server and connect to it. If you install the RPM package, the startup
script will be copied into the /etc/init.d directory which you use to
start the database at boot time. Client utilities are available to manage the
database.

MySQL is an easy database to use. This appendix contains some very
basic commands that you can use to get started with the database. This is
not a MySQL manual or tutorial by any means. Comprehensive informa-
tion about MySQL can be obtained from http://www.mysql.com/doc/ web
site.

M

223

224 Appendix B • Getting Started with MySQL
For New Users of MySQL
The MySQL server daemon, mysqld, can be started using the startup script. It listens
to incoming connection requests from clients. The package comes with mysql client
program that you can use to connect to the database and carry out some system admin-
istration tasks as well as add/update/delete records in the database. You can have multi-
ple databases and at the time of connection you can define to which database you want
to connect.

Starting and Stopping MySQL Server

You can start and stop MySQL Server using startup script /etc/init.d/
mysqld on Linux machines. This script is shown below:

#!/bin/bash
#
mysqld This shell script takes care of starting
and stopping
the MySQL subsystem (mysqld).
#
chkconfig: - 78 12
description: MySQL database server.
processname: mysqld
config: /etc/my.cnf
pidfile: /var/run/mysqld/mysqld.pid

Source function library.
. /etc/rc.d/init.d/functions

Source networking configuration.
. /etc/sysconfig/network

Source subsystem configuration.
[-f /etc/sysconfig/subsys/mysqld] && . /etc/sysconfig/subsys/mysqld

prog="MySQL"

start(){
touch /var/log/mysqld.log
chown mysql.mysql /var/log/mysqld.log
chmod 0640 /var/log/mysqld.log
if [! -d /var/lib/mysql/mysql] ; then
 action $"Initializing MySQL database: " /usr/bin/

mysql_install_db
 ret=$?

For New Users of MySQL 225
 chown -R mysql.mysql /var/lib/mysql
 if [$ret -ne 0] ; then
 return $ret
 fi
fi
chown mysql.mysql /var/lib/mysql
chmod 0755 /var/lib/mysql
/usr/bin/safe_mysqld --defaults-file=/etc/my.cnf >/dev/null 2>&1

&
ret=$?
if [$ret -eq 0]; then
 action $"Starting $prog: " /bin/true
else

 action $"Starting $prog: " /bin/false
fi
[$ret -eq 0] && touch /var/lock/subsys/mysqld
return $ret

}

stop(){
 /bin/kill `cat /var/run/mysqld/mysqld.pid 2> /dev/null ` > /

dev/null 2>&1
ret=$?
if [$ret -eq 0]; then
 action $"Stopping $prog: " /bin/true
else

 action $"Stopping $prog: " /bin/false
fi
[$ret -eq 0] && rm -f /var/lock/subsys/mysqld
[$ret -eq 0] && rm -f /var/lib/mysql/mysql.sock
return $ret

}
restart(){
 stop
 start
}

condrestart(){
 [-e /var/lock/subsys/mysqld] && restart || :
}

reload(){
 [-e /var/lock/subsys/mysqld] && mysqladmin reload
}

See how we were called.
case "$1" in

226 Appendix B • Getting Started with MySQL
 start)

 start

 ;;

 stop)

 stop

 ;;

 status)
 status mysqld

 ;;

 reload)

 reload

 ;;

 restart)
 restart

 ;;

 condrestart)

 condrestart

 ;;

 *)

 echo $"Usage: $0 {start|stop|status|reload|condrestart|restart}"
 exit 1

esac

exit $?

To start the server, use the following commands:

/etc/init.d/mysqld start

When you start MySQL for the first time, you will see the following messages on
your screen:

[root@conformix /root]# /etc/init.d/mysqld start

Initializing MySQL database: [OK]

Starting MySQL: [OK]
[root@conformix /root]#

The next time you start MySQL, it will not show the first line of output because it
only needs to initialize its own database the first time you start it.

To stop the database, use the following command:

[root@conformix /root]# /etc/init.d/mysqld stop

Stopping MySQL: [OK]

[root@conformix /root]#

If the script is not available on your platform, you can create a similar script your-
self for your particular UNIX platform.

For New Users of MySQL 227
MySQL Server Configuration File

At startup time, the server uses its configuration file /etc/my.cnf as men-
tioned in this startup script. The default configuration file that came with my distribu-
tion of Linux 7.1 is shown below:

[mysqld]
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock

[mysql.server]
user=mysql
basedir=/var/lib

[safe_mysqld]
err-log=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid

Database Storage Files

Each database is stored in a directory under /var/lib/mysql top level direc-
tory (configurable through my.cnf file). For example, if you use “snort” as the data-
base name, all files in this database will be located in the directory /var/lib/
mysql/snort. You have used a script to create tables in this database in Chapter 5.
The typical contents of this directory after creating all tables is as follows:

[root@laptop]# ls -l /var/lib/mysql/snort
total 4080
-rw-rw---- 1 mysql mysql 8614 Apr 30 14:30
data.frm
-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
data.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
data.MYI
-rw-rw---- 1 mysql mysql 8606 Apr 30 14:30
detail.frm
-rw-rw---- 1 mysql mysql 40 Apr 30 14:30
detail.MYD
-rw-rw---- 1 mysql mysql 2048 Apr 30 14:30
detail.MYI
-rw-rw---- 1 mysql mysql 8614 Apr 30 14:30
encoding.frm
-rw-rw---- 1 mysql mysql 60 Apr 30 14:30
encoding.MYD
-rw-rw---- 1 mysql mysql 2048 Apr 30 14:30
encoding.MYI

228 Appendix B • Getting Started with MySQL
-rw-rw---- 1 mysql mysql 8642 Apr 30 14:30
event.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
event.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
event.MYI

-rw-rw---- 1 mysql mysql 8802 Apr 30 14:39
flags.frm

-rw-rw---- 1 mysql mysql 17476 Apr 30 14:39
flags.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:39
flags.MYI

-rw-rw---- 1 mysql mysql 8738 Apr 30 14:30
icmphdr.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
icmphdr.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
icmphdr.MYI

-rw-rw---- 1 mysql mysql 8920 Apr 30 14:30
iphdr.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
iphdr.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
iphdr.MYI

-rw-rw---- 1 mysql mysql 8728 Apr 30 14:30
opt.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
opt.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
opt.MYI

-rw-rw---- 1 mysql mysql 8624 Apr 30 14:39
protocols.frm

-rw-rw---- 1 mysql mysql 6248 Apr 30 14:39
protocols.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:39
protocols.MYI

-rw-rw---- 1 mysql mysql 8630 Apr 30 14:30
reference.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
reference.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
reference.MYI

-rw-rw---- 1 mysql mysql 8618 Apr 30 14:30
reference_system.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
reference_system.MYD

For New Users of MySQL 229
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
reference_system.MYI

-rw-rw---- 1 mysql mysql 8580 Apr 30 14:30
schema.frm

-rw-rw---- 1 mysql mysql 13 Apr 30 14:30
schema.MYD

-rw-rw---- 1 mysql mysql 2048 Apr 30 14:30
schema.MYI

-rw-rw---- 1 mysql mysql 8706 Apr 30 14:30
sensor.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
sensor.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
sensor.MYI

-rw-rw---- 1 mysql mysql 8648 Apr 30 14:39
services.frm

-rw-rw---- 1 mysql mysql 3686536 Apr 30 14:39
services.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:39
services.MYI

-rw-rw---- 1 mysql mysql 8614 Apr 30 14:30
sig_class.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
sig_class.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
sig_class.MYI

-rw-rw---- 1 mysql mysql 8730 Apr 30 14:30
signature.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
signature.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
signature.MYI

-rw-rw---- 1 mysql mysql 8616 Apr 30 14:30
sig_reference.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
sig_reference.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
sig_reference.MYI

-rw-rw---- 1 mysql mysql 8888 Apr 30 14:30
tcphdr.frm

-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
tcphdr.MYD

-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
tcphdr.MYI

-rw-rw---- 1 mysql mysql 8704 Apr 30 14:30
udphdr.frm

230 Appendix B • Getting Started with MySQL
-rw-rw---- 1 mysql mysql 0 Apr 30 14:30
udphdr.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30
udphdr.MYI
[root@laptop]#

As you may have figured out, there are three files related to each table in the data-
base. To find out how many databases are present on your system, just list the directo-
ries under /usr/lib/mysql.

Basic MySQL Commands

This section presents some very basic MySQL commands. These commands are
required to do basic operations with the database.

Creating a Database
First of all you have to login to create a database. You can login as user “root” to

MySQL server as shown below. This root user is not the Linux root user. It is related to
MySQL database only.

[root@conformix /root]# mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 3.23.36

Type 'help;' or '\h' for help. Type '\c' to clear the buffer

mysql>

At the mysql> prompt, you can use MySQL commands. The following com-
mand creates testdb.

mysql> create database testdb;
Query OK, 1 row affected (0.01 sec)

mysql>

When you create a database, a directory is created under /var/lib/mysql to
store database files. In this case the name of the directory is /var/lib/mysql/
testdb.

Displaying a List of Databases
At the command prompt, you can use the show databases command to list

available databases.

For New Users of MySQL 231
mysql> show databases;
+----------+
| Database |
+----------+
| mysql |
| test |
| testdb |
+----------+
3 rows in set (0.00 sec)

mysql>

This command shows that three databases exist. The names of these databases are
mysql, test and testdb.

Connecting to a Database
To connect to a database, you can use the use command by providing the name of

the database as the argument to this command. The following command starts using
testdb as the database.

mysql> use testdb;
Database changed
mysql>

In some cases you can also use the following command:

mysql> connect testdb
Reading table information for completion of table and column
names
You can turn off this feature to get a quicker startup with -A

Connection id: 3
Current database: testdb

mysql>

Creating Tables
The following command creates a table with the name customer. The table con-

tains four columns.

mysql> create table customers (name varchar(20), address
varchar(40), phone varchar(10), dob date);
Query OK, 0 rows affected (0.00 sec)

mysql>

Column names and their data types are defined in the command. When you create
a table, three files are created in the directory that corresponds to the database. In this

232 Appendix B • Getting Started with MySQL
case, files are created in /var/lib/mysql/testdb directory as shown in the fol-
lowing command.

[root@conformix]# ls /var/lib/mysql/testdb
customers.frm customers.MYD customers.MYI
[root@conformix]#

The names of these files start with the name used for the table.

Listing Tables
The show tables command lists currently defined tables in the database.

mysql> show tables;
+------------------+
| Tables_in_testdb |
+------------------+
| customers |
+------------------+
1 row in set (0.01 sec)

mysql>

Displaying Table Information
You can display information about each table column by using the describe

command. The following command displays information about recently created table
customers.

mysql> describe customers;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| name | varchar(20) | YES | | NULL | |
| address | varchar(40) | YES | | NULL | |
| phone | varchar(10) | YES | | NULL | |
| dob | date | YES | | NULL | |
+---------+-------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

mysql>

Adding Data to Tables
Data can be added to a table using the insert command. The following com-

mand adds one row to the customers table.

mysql> insert into customers values ('Boota', '135 SB,
Sargodha', '001-946-15', '1970-01-01');
Query OK, 1 row affected (0.06 sec)

mysql>

For New Users of MySQL 233
Displaying Data in Tables
The select command retrieves data from one or more tables. In its simplest

form, the following command displays all records in the customers table.

mysql> select * from customers;
+-------+------------------+------------+------------+
| name | address | phone | dob |
+-------+------------------+------------+------------+
| Boota | 135 SB, Sargodha | 001-946-15 | 1970-01-01 |
+-------+------------------+------------+------------+
1 row in set (0.00 sec)

mysql>

For more information on the select command, use any SQL language refer-
ence.

Deleting Data from Tables
The delete command removes data from the table. The following command

deletes records from the customer table where the name of the customer is Boota.

mysql> delete from customers where customers.name='Boota';
Query OK, 1 row affected (0.00 sec)

mysql>

Switching from One Database to Another
You can use the use commands to switch to another database. The following

command starts using mysql-test database.

mysql> use mysql-test
Reading table information for completion of table and column
names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql>

Creating a User
The simplest way to create a user is to grant the user some access rights to a data-

base. If the user does not already exist, it will be created. The following command cre-
ates a user rrehman and grants all access rights on the testdb database.

mysql> grant all on testdb.* to rrehman;
Query OK, 0 rows affected (0.00 sec)

mysql>

234 Appendix B • Getting Started with MySQL
This command creates a row in the user table in mysql database for user rreh-
man and grants permission for everything to user rrehman on database testdb.

Setting Password for a User
You can assign a password to the user upon creation. The following command cre-

ates a user rrehman and assigns a password boota.

grant all on testdb.* to rrehman identified by ‘boota’;

To assign a password later on, use the following command:

mysql> set password for rrehman = password('kaka');
Query OK, 0 rows affected (0.00 sec)

mysql>

Granting Permissions
The grant command is used to grant different levels of permissions to users.

Refer to the following command where different permissions are assigned to a user rr
on localhost.

mysql> grant CREATE,INSERT,DELETE,UPDATE,SELECT on snort.* to
rr@localhost;

Query OK, 0 rows affected (0.00 sec)

mysql>

Using mysqladmin Utility

The mysqladmin utility is used for database administration. A complete discus-
sion is beyond the scope of this book. The following output of the command shows
some of the tasks that it is capable of doing.

[root@conformix /root]# mysqladmin
mysqladmin Ver 8.18 Distrib 3.23.36, for redhat-linux-gnu on i386

Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB

This software comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to modify and redistribute it under the GPL license

Administration program for the mysqld daemon.

Usage: mysqladmin [OPTIONS] command command....

 -#, --debug=... Output debug log. Often this is
'd:t:o,filename`

 -f, --force Don't ask for confirmation on drop database;
with

For New Users of MySQL 235
multiple commands, continue even if an error
occurs

 -?, --help Display this help and exit
 --character-sets-dir=...
 Set the character set directory
 -C, --compress Use compression in server/client protocol
 -h, --host=# Connect to host
 -p, --password[=...] Password to use when connecting to server

If password is not given it's asked from the tty
 -P --port=... Port number to use for connection
 -i, --sleep=sec Execute commands again and again with a sleep between
 -r, --relative Show difference between current and previous

values
 when used with -i. Currently works only with
 extended-status
 -E, --vertical Print output vertically. Is similar to --

relative,
 but prints output vertically.
 -s, --silent Silently exit if one can't connect to server
 -S, --socket=...Socket file to use for connection
 -t, --timeout=...Timeout for connection to the mysqld server
 -u, --user=# User for login if not current user
 -v, --verbose Write more information
 -V, --version Output version information and exit
 -w, --wait[=retries] Wait and retry if connection is down

Default options are read from the following files in the given order:
/etc/my.cnf /var/lib/mysql/my.cnf ~/.my.cnf
The following groups are read: mysqladmin client
The following options may be given as the first argument:
--print-defaults Print the program argument list and exit
--no-defaults Don't read default options from any options file
--defaults-file=# Only read default options from the given file #
--defaults-extra-file=# Read this file after the global files are read

Possible variables for option --set-variable (-O) are:
connect_timeout current value: 0
shutdown_timeout current value: 3600

Where command is a one or more of: (Commands may be shortened)
 create databasenameCreate a new database
 drop databasenameDelete a database and all its tables
 extended-status Gives an extended status message from the

server
 flush-hosts Flush all cached hosts
 flush-logs Flush all logs
 flush-status Clear status variables

236 Appendix B • Getting Started with MySQL
 flush-tables Flush all tables
 flush-threads Flush the thread cache
 flush-privileges Reload grant tables (same as reload)
 kill id,id,... Kill mysql threads
 password new-password Change old password to new-password
 ping Check if mysqld is alive
 processlist Show list of active threads in server
 reload Reload grant tables
 refresh Flush all tables and close and open logfiles
 shutdown Take server down
 status Gives a short status message from the server
 start-slave Start slave
 stop-slave Stop slave
 variables Prints variables available
 version Get version info from server
[root@conformix]#

You can use different options on the command line. For example “mysqladmin
version” will show the version number for the utility.

A P P E N D I X C
Packet Header
Formats
nort rules use the protocol type field to distinguish among different
protocols. Different header parts in packets are used to determine

the type of protocol used in a packet. In addition, rule options can test
many of the header fields. This appendix explains headers of different
protocols. These packet headers are explained in detail in RFCs. Under-
standing different parts of these packet headers is very important for writ-
ing effective Snort rules.

IP Packet Header
The basic IPv4 header consists of 20 bytes. An options part may be present after these
20 bytes. This optional part may be up to forty bytes long. Structure of IP header is
present in Figure C-1.

S

V IHL TOS Total Length

ID Frag OffsetF

ProtocolTTL Header Checksum

Source Address

Destination Address

Figure C-1 IP header
237

238 Appendix C • Packet Header Formats
Detailed information about the IP packet header can be found in RFC 791 which
is available from ftp://ftp.isi.edu/in-notes/rfc791.txt and many other places including
the RFC editor web site. A brief explanation of different fields in the IP packet header is
found in Table C-1.

ICMP Packet Header
ICMP header is completely explained in RFC 792, which is available from ftp://
ftp.isi.edu/in-notes/rfc792.txt for download. Figure C-2 shows basic structure of ICMP
header. Note that depending upon type of ICMP packet, this basic header is followed by
different parts.

Table C-1 IP Packet Header Fields

Field Explanation

V Version number. The value is 4 for IPv4. Four bits are used for this part.

IHL This field shows length of IP packet header. This is used to find out if the
options part is present after the basic header. Four bits are used for IHL and it
shows length in 32-bit word length. The value of this field for a basic 20-bytes
header is 5.

TOS This field shows type of service used for this packet. It is 8 bits in length.

Total Length This field shows the length of the IP packet, including the data part. It is 16 bits
long.

ID This field packet identification number. This part is 16 bits long.

F This part is three bits long and it shows different flags used in the IP header.

Frag Offset This part is thirteen bits long and it shows fragment offset in case an IP packet
is fragmented.

TTL This is time to live value. It is eight bits long.

Protocol This part shows transport layer protocol number. It is eight bits long.

Header Checksum This part shows header checksum, which is used to detect any error in the IP
header. This part is sixteen bits long.

Source Address This is the 32 bit long source IP address.

Destination Address This is the 32 bit long destination IP address.

ICMP Packet Header 239
An explanation of the fields in a basic ICMP header is provided in Table C-2.

The ICMP information part is variable depending upon the value of the type field.
For example, the ping command uses ICMP ECHO REQUEST type packet. This
packet header is shown in Figure C-3.

For a complete list of ICMP packet types, refer to RFC 792.

Table C-2 ICMP Packet Header Fields

Field Explanation

Type This part is 8 bits long and shows the type of ICMP packet.

Code This part is also 8 bits long and shows the sub-type or code number used for the packet.

Checksum This part is 16 bits long and is used to detect any errors in the ICMP packet.

CodeType Checksum

ICMP Information

Figure C-2 Basic ICMP header

CodeType Checksum

Identifier Sequence Number

Figure C-3 ICMP packet used in ping command.

240 Appendix C • Packet Header Formats
TCP Packet Header

TCP packet header is discussed in detail in RFC 793 which is available at ftp://
ftp.isi.edu/in-notes/rfc793.txt for download. Figure C-4 shows structure of TCP header.

Different parts of TCP header are explained in Table C-3. Again for a detailed
explanation of TCP, refer to the RFC 793.

Table C-3 TCP Packet Header Fields

Field Explanation

Source Port This part is 16 bits long and shows source port number.

Destination Port This is a 16-bit long field and shows the destination port number.

Sequence Number This is the sequence number for the TCP packet. It is 32 bits long. It
shows the sequence number of the first data octet in the packet. How-
ever if SYN bit is set, this number shows the initial sequence number.

Acknowledgement Number This number is used for acknowledging packets. It is 32 bits long. This
number shows the sequence number of the octet that the sender is
expecting.

Offset This is a 4- bit field and shows the length of the TCP header. Length is
measured in 32-bit numbers.

Reserved Six bits are reserved.

Flags or Control bits The flags are six bits in length and are used for control purposes.
These bits are URG, ACK, PSH, RST, SYN and FIN. A value of 1 in
any bit place indicates the flag is set.

Window This is 16 bits long and is used to tell the other side about the length of
TCP window size.

Source Port Destination Port

Sequence Number

Acknowledgement Number

Offset

Checksum

FlagsReserved Window

Urgent Pointer

Options and Padding

Figure C-4 TCP header

UDP Packet Header 241
UDP Packet Header
The UDP packet header is simple and is described in RFC 768. It has four fields as
shown in Figure C-5. Each field is 16 bits long. Names of all fields are self-explanatory.

ARP Packet Header
ARP packets are used to discover the hardware or MAC addresses when the IP address
is known. In any LAN, you will see a lot of ARP packets being transmitted. This is
because each host has to find out the MAC address of the destination host before send-
ing data. The ARP is a broadcast protocol and its packet header is shown in Figure C-6.

Checksum This is a checksum for TCP header and data. It is 16 bits long.

Urgent Pointer This field is used only when the URG flag is set. It is 16 bits long.

Options This part is of variable length.

Table C-3 TCP Packet Header Fields (continued)

Field Explanation

Source Port Destination Port

Length Checksum

Figure C-5 UDP packet header

HW Address Type Protocol Address Type

HW Addr Len OperationProto Addr Len

Source Hardware Address

Source Hardware Address (Continued) Source Protocol Address

Source Protocol Address (Continued) Target Hardware Address

Target Hardware Address (Continued)

Target Protocol Address

Figure C-6 ARP header

242 Appendix C • Packet Header Formats
Different fields in the ARP packet header are described in Table C-4.

Table C-4 ARP Packet Header Fields

Field Explanation

HW Address Type The HW Address type is a 16 bit long field and it shows the type of hard-
ware. Since most of LANs are Ethernet-based, its value is 1. For IEEE 802
networks, its value is 6. For IPSec tunnel, the value is 31.

Protocol Address Type The protocol address type shows the protocol used in the network layer.
The value of this field is 0x800 for IP.

HW Addr Len This field shows the length of the hardware address in number of bytes.
This field is 8 bits long.

Proto Addr Length This field shows the length of the protocol address. This field is also 8 bits
long.

Operation or Opcode This field is 16 bits long and is used for the type of ARP packet. A value
of 1 indicates a request packet and a value of 2 indicates a reply packet.

Source hardware address This is a 48 bit long field in the case of Ethernet. However its length is
variable.

Source protocol address This is a 32 bit field in the case of IPv4 packets. However its length is vari-
able.

Target hardware address This is 48 bits long in Ethernet and its length is variable.

Target protocol address This is 32 bits in the case of IPv4 and its length is variable.

A P P E N D I X D
Glossary
his appendix defines some of the most commonly used terms in this
book.

Alert A message generated when any intruder activity is detected. Alerts may be sent
in many different forms, e.g., pop-up window, logging to screen, e-mail and so on.

DMZ Demilitarized zone.

HIDS Host Intrusion Detection System. A system that detects intruder activity for a
host.

IDS Intrusion Detection System. A system that detects any intruder activity. Snort is
an example of an IDS.

IDS Signature A pattern that we want to look for in a data packet. Based upon a par-
ticular signature we can define appropriate action to take.

NIDS Network Intrusion Detection System. This is an intrusion detection system that
works for a network. Usually a device (computer or a dedicated device) is placed at
an appropriate location in the network to detect any intruder activity.

Rule Header The first part of each Snort rule. It contains information about action,
protocol, source and destination addresses, port numbers and direction.

Snort Configuration File The snort.conf file, which is the main configura-
tion file for Snort. It is read at the time when Snort starts.

T

243

244 Appendix D • Glossary
Snort Rule A way of conveying intruder signatures to Snort.

TOS Type of Service field used in IPv4 packet header.

Trust Levels Different levels of trust may be imposed in different trust zones (see
Trust Zone). For example, a financial database may be at a different trust level than a
company public web server.

Trust Zone An area of your network where you apply the same security policy. For
example, all publicly accessible hosts (WWW and e-mail servers) may be placed in a
demilitarized zone (DMZ).

TTL Time to Live field used in IP packet header.

A P P E N D I X E
SNML DTD
his is the DTD file used for Snort XML based messages.

<?xml version="1.0" encoding="UTF-8"?>

<!-- * Simple Network Markup Language (SNML)
 * Version 0.2
 *
 * snml.dtd
 * Copyright (C) 2001, 2002 Carnegie Mellon University
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 -->

<!-- This DTD defines a simple XML exchange format for Network
 Intrusion Detection Systems.

T

245

246 Appendix E • SNML DTD
 The snml can stand for "Snort Markup Language" when used with
 the snort IDS or as the "Simple Network Markup Language" when
 used in multi-vendor IDS environments.

 Comments or questions can be directed to:

 Roman Danyliw <rdd@cert.org>
 -->

<!DOCTYPE snml-message-version-0.2 [<!ELEMENT report (event*)>

<!ELEMENT event (sensor, signature, reference?, timestamp, packet)>

<!--
 | The sensor element contains information that can be used to
 | uniquely identify the source which detected the event.
 | It always contains a hostname. Optionally, a
 | sensor filter, a data source filename, or an ip address
 | and network interface may be given.
 -->
<!ELEMENT sensor ((file|(ipaddr, interface?)), hostname, filter?)>

<!--
 | sensor attributes
 | format = encoding format of the packet payload (data)
 | detail = defines which protocol fields will be present
 | fast - limited information
 | full - the full packet will be present
 -->
<!ATTLIST sensor
 format (base64|ascii|hex) #REQUIRED
 detail (fast|full) #REQUIRED
>

<!-- This field contains an ordinary hostname -->
<!ELEMENT hostname (#PCDATA)>

<!-- This contains a file name with a full path -->
<!ELEMENT file (#PCDATA)>

<!--
 | Contains a string representing a network interface
 | e.g., eth0, ppp0, hme0, etc.
 -->
<!ELEMENT interface (#PCDATA)>

247
<!--
 | A string representing a tcpdump filter that is normally passed
 | in on the command line. e.g. "not net 10.1.1.0/24"
 -->
<!ELEMENT filter (#PCDATA)>

<!--
 | The signature is free-form text describing the event. In snort,
 | it is the string contained in the "msg" rule option
 -->
<!ELEMENT signature (#PCDATA)>

<!--
 | signature attributes
 | id = unique identifier of this signature (0..2^32-1)
 | revision = revision number of this signature
 | class = classification identifier of this signature (numeric)
 | priority = numeric priority of this event - (0..255)
 -->
<!ATTLIST signature
 id CDATA #IMPLIED
 revision CDATA #IMPLIED
 class CDATA #IMPLIED
 priority CDATA #IMPLIED
>

<!--
 | A reference provides a mechanism to refer to an external
 | database for information related to this signature or event.
 -->
<!ELEMENT reference (#PCDATA)>

<!--
 | reference attribute
 | system = the external database referenced
 | - cve : Common Vulnerabilities and Exposures
 | (http://cve.mitre.org)
 | - bugtraq : Bugtraq
 | (http://www.securityfocus.com/bid)
 | - arachnids : arachNIDS
 | (http://www.whitehats.com/ids)
 | - mcafee : McAfee
 | (http://vil.nai.com)
 | - url : custom URL
 -->
<!ATTLIST reference
 system CDATA #REQUIRED

248 Appendix E • SNML DTD
>

<!--
 | The timestamp must conform to ISO-8601 standard.
 | e.g., ISO-8601: 1999-08-04 00:01:23-05
 -->
<!ELEMENT timestamp (#PCDATA)>

<!--
 | A packet can be logged without being decoded using "raw"
 | mode. This encoding should only be used when a packet is
 | received containing protocols which cannot be decoded.
 -->
<!ELEMENT packet (raw|iphdr)>

<!--
 | IP address (in dot-quad notation).
 | e.g., 10.1.2.3
 | Note: Domain names are not valid.
 |
 | The version attribute is the version of IP address
 | (should be 4 or 6).
 -->
<!ELEMENT ipaddr (#PCDATA)>
<!ATTLIST ipaddr
 version CDATA #REQUIRED
>

<!-- raw contains a base64 representation of a packet -->
<!ELEMENT raw (#PCDATA)>

<!--
 | IPv4 header
 | saddr = source IP address - IP address IP (192.168.1.2)
 | daddr = destination IP address - IP address IP (192.168.1.2)
 | ver = version of ip - 1 byte INT (0 - 15)
 | hlen = header length in 32 bit words
 | - 1 byte INT (0 - 15)
 | tos = type of service - 1 byte INT (0 - 255)
 | len = total length of the packet
 | - 2 byte INT (0 - 65535)
 | id = identification - 2 byte INT (0 - 65535)
 | flags = fragment flags - 1 byte INT (0 - 7)
 | off = fragment offset - 2 byte INT (0 - 65535)
 | ttl = time to live - 1 byte INT (0 - 255)
 | proto = protocol - 1 byte INT (0 - 255)
 | csum = checksum - 2 byte INT (0 - 65535)

249
 -->
<!ELEMENT iphdr ((tcphdr|udphdr|icmphdr), option*)>
<!ATTLIST iphdr
 saddr CDATA #REQUIRED
 daddr CDATA #REQUIRED
 ver CDATA #REQUIRED
 hlen CDATA #IMPLIED
 tos CDATA #IMPLIED
 len CDATA #IMPLIED
 id CDATA #IMPLIED
 flags CDATA #IMPLIED
 ttl CDATA #IMPLIED
 off CDATA #IMPLIED
 ttl CDATA #IMPLIED
 proto CDATA #REQUIRED
 csum CDATA #IMPLIED
>

<!--
 | IP or TCP option
 | option = option code - 1 byte INT (0 - 255)
 | len = length of option data - 1 byte INT (0 - 255)
 -->
<!ELEMENT option (#PCDATA)>
<!ATTLIST option
 code CDATA #REQUIRED
 len CDATA #IMPLIED
>

<!--
 | TCP header information
 | sport = source port - 2 byte INT (0 - 65535)
 | dport = destination port - 2 byte INT (0 - 65535)
 | seq = sequence number - 4 byte INT (0 - 4294967295)
 | ack = acknowledgment number - 4 byte INT (0 - 4294967295)
 | off = data offset - 1 byte INT (0 - 15)
 | res = reserved field - 1 byte INT (0 - 63)
 | flags = represents TCP flags - 1 byte INT (0 - 255)
 | win = window - 2 byte INT (0 - 65535)
 | csum = checksum - 2 byte INT (0 - 65535)
 | urp = urgent pointer - 2 byte INT (0 - 65535)
 -->
<!ELEMENT tcphdr (data, option*)>
<!ATTLIST tcphdr
 sport CDATA #REQUIRED
 dport CDATA #REQUIRED
 seq CDATA #IMPLIED

250 Appendix E • SNML DTD
 ack CDATA #IMPLIED
 off CDATA #IMPLIED
 res CDATA #IMPLIED
 flags CDATA #REQUIRED
 win CDATA #IMPLIED
 csum CDATA #IMPLIED
 urp CDATA #IMPLIED
>

<!--
 | UDP header information
 | sport = source port - 2 byte INT (0 - 65535)
 | dport = destination port - 2 byte INT (0 - 65535)
 | len = length field of UDP header
 | - 2 byte INT (0 - 65535)
 | csum = checksum - 2 byte INT (0 - 65535)
 -->
<!ELEMENT udphdr (data)>
<!ATTLIST udphdr
 sport CDATA #REQUIRED
 dport CDATA #REQUIRED
 len CDATA #IMPLIED
 csum CDATA #IMPLIED
>

<!--
 | ICMP header
 | type = icmp type - 1 byte INT (0 - 255)
 | code = icmp code - 1 byte INT (0 - 255)
 | csum = checksum - 2 byte INT (0 - 65535)
 | id = identifier - 2 byte INT (0 - 65535)
 | seq = sequence number - 2 byte INT (0 - 65535)
 -->
<!ELEMENT icmphdr (data)>
<!ATTLIST icmphdr
 type CDATA #REQUIRED
 code CDATA #REQUIRED
 csum CDATA #IMPLIED
 id CDATA #IMPLIED
 seq CDATA #IMPLIED
>

<!-- Packet payload -->
<!ELEMENT data (#PCDATA)>

]>

251

I N D E X

A

ACID Web console, 217–218
blocking access to the Web server on the

firewall, 218
iptables, 218
using a private network, 217

ACID-XML, 146, 156

acid_conf.php configuration file, 181, 183–
184

ack keyword, 89

Acknowledgment Number field, TCP packet
header, 240

-A command line option, 55

-a command line option, 114

-A console command line option, 43

Activeworx web site, 219

Address, 80, 84–86, 113

Address parts:
Snort rules, 84–86

address exclusion, 85–86
address lists, 86

Address Resolution Protocol (ARP), 138–139

ADODB, 24
downloading, 180

FAQ, 207
file location, path to, 181

-A fast command line option, 67

Alert action, 82

Alert modes, 66–71
fast mode, 67–68
full mode, 68
no alert mode, 69
sending alerts to SNMP, 69
sending alerts to Syslog, 69
sending alerts to Windows, 70–71
UNIX socket mode, 68

Alert rules, 119

alert_fast output module, 143
alertfile directive, 114

alert_full output module, 143

alert_quick file, 143
Alerts, 7, 43–44

alert_smb module, 143–144

alert_syslog output module, 140–142
alert_with_interface_name directive,

114

American Registry for Internet Numbers
(ARIN), 197

252 Index

Analysis Control for Intrusion Database (AC-
ID), 2–4, 21, 24, 90, 105, 157, 173, 177

alert details, 191–192
archiving Snort data, 198–200
configuring, 181–184
DB Setup page, 184, 186
defined, 177–179
downloading, 179–180
features, 178
first use of, 184–185
graphs, generating, 198
installing, 179–181
main page, 184, 188–189
protocol data, listing, 189–190
searching, 192–196
tables, 184, 187, 201–202
using, 184–202
web site, 207
whois databases, searching, 197

Anomaly-based intrusion detection, 5

-A none command line option, 69
any keyword, 113

Apache Web server, 2, 21, 24, 26, 73, 177
web site, 207

Application layer headers, 15
and signatures, 7

Arachnids web site, 129

Argus Network Security Services Inc., 73
ARP packet header, 241–242

Attack signatures, 11
Attacks, 11

-a unsock command line option, 68

Automatic update of Snort rules, 120–125
simple message, 120–121
sophisticated and complex method, 122–

125

B

Barnyard, 7, 23, 154, 156
defined, 207
installing, 207

-b command line option, 55

Berkeley Packet Filter (BPF), 155
Book website, 27
BPF, 155
bpf_file directive, 114
Bugtraq, 104

C

Ca parameter, XML module, 146
-c command line option, 55
-C command line option, 114
Cert parameter, XML module, 146
Checkpoint, 1, 21
Checkpoint Firewall-1, 210–211
Checksum field, TCP packet header, 241
checksum_mode directive, 115
chroot directive, 115
Cisco PIX, 210
Cisco Systems, 1, 16, 21
classification directive, 114
classification.config, 38–39, 56, 57, 90, 115
Classless Inter-Domain Routing (CIDR), 78–

79, 84, 129, 156
classtype keyword, 89–93
clientonly argument, to stream4_reassembly

preprocessor, 137
Command line options, Snort, 55–56
Common Internet File System (CIFS), 70
Computer Associates, 25
Configuration parameters, and snort.conf,

112
configure script, 31, 56

command line options, 31–33
command line parameters, 35
options, 34–35
output, 34
prefix option, 34
typical session with, 34

Console, logging data to, 66
content keyword, 93–94
content-list keyword, 95
Content matching, 94

Index 253

contrib directory, 31, 164–165
count argument, tag keyword, 110
CREATE command, 163
create_mysql script, 164–165
CSV output module, 151–153

options, 152–153

Ctrl-C, 41, 59
CVE, 104, 105

D

daemon directive, 114
Data packets, and signatures, 7
Databases:

list of parameters for, 151
logging to, 150–151

Dbname parameter, databases used with
Snort, 151

-d command line option, 114
-D command line option, 55, 114, 115
decode_arp directive, 114
decode_data_link directive, 114
DELETE command, 163
Demilitarized zone (DMZ), networks, 9
depth keyword, 94, 95
Destination address, 81
Detail parameter, databases used with Snort,

151
Detection engine, 14–16, 155
detect_scan argument, stream4module, 137
detect_state_problems argument,

stream4module, 137
Detination Address field, IP packet header,

238
direction argument, tag keyword, 110
DNS header, 15
doc directory, 31
Don’t Fragment Bit (DF), 97
Drop, use of term, 75
dsize keyword, 95–96
dsniff package, 138
dump_chars_only directive, 114

dump_payload directive, 114
dump_payload_verbose directive, 115

E

Easy IDS, 218–219
Encoding parameter, databases used with

Snort, 151
Encryption, 1
Escalation process, 11
established option, flow keyword, 109
etc directory, 31
etc/init.d directory, 56
/etc/init.d/snort script, 52
/etc/samba/smb.conf file, 70–71
/etc/snort directory, 57
etc/snort/snort.conf, 65fn
/etc/syslog.conf file, 142
eth0 interface, 20, 54, 72
eth1 interface, 51, 54, 72
Ethernet, 13
eXtensible Markup Language (XML), 16, 156
EXTERNAL_NET, 113
$EXTERNAL_NET variable, 128

F

F field, IP packet header, 238
False alarms, 7–8
Fast mode, 67–68
-F command line option, 114
File parameter, XML module, 146
File Transfer Protocol (FTP), 9
FIN packet, 104
Firewalls, 1–2, 26
flags keyword, 96–97
Flags or Control Bits field, TCP packet head-

er, 240
Flexible Responde (FlexResp), 105–107
flow keyword, 108–109
Frag Offset field, IP packet header, 238
fragbits keyword, 97
Fragmentation, 14

254 Index

from_client option, flow keyword, 109–110
from_server option, flow keyword, 109–110
FTP header, 15
Full mode, 68

G

-g command line option, 114
GD library, See Graphic display library

(GD library):
GET keyword, 93

Glossary, 243-244:
Graphic display library (GD library), 3–4, 24,

180, 207

H

Hackers, 1, 8, 9, 11, 13–14, 134
Header Checksum field, IP packet header, 238
Hewlett-Packard, 25

HIDS, 6
HOME_NET, 112–113
Honey Pot project web site, 10, 21

Honey pots, 9–10, 75
Honeyd web site, 10, 21

Host-based intrusion detection system
(HIDS), 6

Host parameter:
databases used with Snort, 151
XML module, 146

HP OpenView, 11, 23, 69, 83
HW Addr Len field, ARP packet header, 242
HW Address Type field, ARP packet header,

242

Hyper Text Transfer Protocol (HTTP) server,
9, 86

HTTP decode, 133–134

I

-i eth0 command line option, 72
IBM, 25

ICMP packet header, 238–239
ICMP packets, 78

ICMP ping packet, 80

ICMP redirect packet, 100
icmp_id keyword, 98
icmp_seq keyword, 98
icode keyword, 99–100
-i command line option, 55, 114
-I command line option, 55
ID field, IP packet header, 238
id keyword, 100
IDS policy, 10–11
IDS policy manager, 212–217

adding a new sensor to, 214–215
modifying a rule in, 216
Policy Editor window, 215–217
window, 213

IHL field, IP packet header, 238
include files, and snort.conf, 112
include keyword, 112, 117
Input modules, 133
Input plug-ins, 13–14, 133
INSERT command, 163
interface directive, 114
Internet Control Message Protocol (ICMP),

156, 76, 80fn, 129
Internet Corporation for Assigned Names and

Numbers (ICANN), 88, 102, 129
Internet Protocol (IP), 9
Intruders, 1, 178–179
Intrusion detection, defined, 5–8
Intrusion detection systems (IDS), 2, 6

administration of, 11
documentation, 11
escalation process, 11
FAQ, 21
incident handling, 11
monitoring, 11
placing in network typology, 8–9
policy, 10–11
protecting, 19–21
reporting, 11
signature updates, 11
typical locations for, 8

Index 255

Intrusion-related signatures/anomalies, 5
IP filter-based firewalls, 210
IP packet header, and signatures, 7
ipopts keyword, 100–101
ip_proto keyword, 101–102
iptables, 218
itype keyword, 98–99

J

JPGRAPH, 198

K

keepstats argument, stream4module, 136
Key parameter, XML module, 146

L

-l command, 15
-l command line option, 114
Levels of trust, 10
Libnet, 73
Libpcap, 73
Linksys home routers, 7
local.rules files, 127
Log action, 82
Log files, 57
Log null output module, 155
Log rules, 119
logdir directive, 114
Logging and alerting system, 15–16
Logs, 7
log_tcpdump output module, 144–145
logto keyword, 102–103
Loose Source Routing (lsrr), 101, 173
Lower boundaries, port numbers, 87

M

make check command, 36
make command, 35, 56
make install command, 33, 35, 56
man ping command, 46
man socket command, 68
man syslog command, 69, 82

man syslog.conf, 82
man tcpdump command, 65
Maximum Transfer Unit (MTU), 13, 97
-m command line option, 115
-M command line option, 55
memcap argument, stream4module, 137
metric argument, tag keyword, 110
Microsoft SQL server, 25
Microsoft Windows, 24–25
Miscellaneous tools, 209–219

ACID Web console, 217–218
blocking access to the Web server on

the firewall, 218
iptables, 218
using a private network, 217

Easy IDS, 218–219
IDS policy manager, 212–217
SnortSam, 210–212

misc.rules file, 104
Monitoring IDS, 11
More Fragments Bit (MF), 97
MRTG, 69
msg keyword, 103
myrules.rules, 118
MySQL, 21, 23–24, 25, 150, 161, 176

basic commands, 230–234
creating user and granting permis-

sions/setting password, 163–164
database:

connecting to, 231
creating, 230
switching from one database to an-

other, 233
database storage files, 227–230
databases command, 230–231
getting started with, 223–236
grant command, 234
installing, 161
libraries, 161
list of databases, displaying, 230–231
mysqladmin utility, 234–236
mysqld, 224

256 Index

permission, granting, 234
server configuration file, 227
Snort compilations with MySQL support,

161
Snort database:

creating, 161–163
creating tables in, 164–170
extra tables
logging to, 172–173
maintenance, 175–176
sample entries in database tables,

168–170
snort.conf configuration file, modifying,

170–171
starting, 224–226
starting Snort with the database support,

171–172
stopping, 224–226
Stunnel, 159, 174
table information, displaying, 232
tables:

adding data to, 232
creating, 231–232
deleting data from, 233
displaying data in, 233
listing, 232

testdb command, 230
user:

creating, 233–234
setting a password for, 234

using Snort with, 157–176
basic steps for, 160–173

web site, 223

MySqL database, 2–4

mysqladmin utility, 234–236

N

-n command line option, 115
-N command line option, 115
-n 1 command line option, 67
Nessus, 2, 21
Netfilter, 21

Netfilter/Iptables, 2

Netscreen, 1–2, 21, 210
Network intrusion detection mode, 65–66
Network intrusion detection system (NIDS),

2, 4, 6, 14, 58, 65–66
Network sniffer mode, 58–65
New action types, defining, 117
NIDS, 6
Nmap, 2, 21, 129, 134, 156
No alert mode, 69
noalerts argument, to stream4_reassembly

preprocessor, 137
nocase keyword, 94, 103
noinspect argument, stream4module, 136
nolog directive, 115
no_promote directive, 115
no_stream option, flow keyword, 109
NULL port scanning method, 135

O

obfuscate directive, 115
-O command line option, 115
Offset field, TCP packet header, 240
offset keyword, 94
Oinkmaster, 122–125, 129
oinkmaster.conf, 125
Open Database Connectivity (ODBC), 157

FAQ, 157fn, 176
project, 176

Open Source firewalls, 1–2
OpenNMS, 23, 69, 83, 129
Operation or Opcode field, ARP packet head-

er, 242
/opt/snort-1.9.0 directory, 30–31

configure script, 31
directories contents, 31

/opt/snort/bin directory, 36–37
/opt/snort/bin/snort -dev, 61–63
/opt/snort/etc directory, 37–38, 56, 65
/opt/snort/etc/snort.conf, 65
/opt/snort/rules, 56
/opt/snort/rules directory, 38, 57

Index 257

Options field, TCP packet header, 241
Oracle, 23, 25, 150
order directive, 114
Output module:

configuring, 116
and snort.conf, 112

Output modules, 15–16, 139–155
alert_fast output module, 143
alert_full output module, 143
alert_smb module, 143–144
alert_syslog output module, 140–142
commonly used, 139
CSV output module, 151–153

CSV options, 152–153
defining in the Snort configuration file,

139
log null output module, 155
logging to databases, 150–151
log_tcpdump output module, 144–145
SNMP traps output module, 154
unified logging output module, 153–154
XML output module, 146–150

examples, 147–150
parameters used with, 146

P

Packet:
application layer level header, 15
packet payload, 15
transport layer head, 14

Packet data, 59–61
Packet decoder, 12, 13, 16
Packet header formats, 237–244

ARP packet header, 241–242
ICMP packet header, 238–239
IP packet header, 237–238
TCP packet header, 240–241
UDP packet header, 241

Packet payload, 15
Pass rules, 119
Pass, use of term, 75
Password parameter, databases used with

Snort, 151

-p command line option, 115

PHP (Pretty Home Page), 3–4, 24, 25, 178
downloading, 180
web site, 207

PHPLOT, 3–4, 24, 178, 180, 181, 207
downloading, 180

pkt_count directive, 115

Platforms, 18–19
Plugins, 131–156
Port address, 81

Port number, 86–88, 113
negation symbol, 87
port ranges, 87
upper and lower boundaries, 87
well-known port numbers, 87–88

Port parameter:
databases used with Snort, 151
XML module, 146

ports argument, to stream4_reassembly pre-
processor, 137

portscan-ignorehosts, 135
PostgresSQL, 25

PPP, 13
Pre-compiled binary packages, and Snort in-

stallation, 28
Predefined action types, and snort.conf, 112

PREFIX, 33–34
--prefix command line option, 34
preprocessor keyword, 133

Preprocessors, 13–14, 16, 132–139
ARP spooling, 138–139
configuring, 116
defined, 13
frag2 module, 135–136
HTTP decode, 133–134
port scanning, 134–135
spade module, 137
stream4 module, 136–137

priority keyboard, 103–104

Proto Addr Length field, ARP packet header,
242

258 Index

Protocol Address Type field, ARP packet
header, 242

Protocol field, IP packet header, 238
Protocol parameter, XML module, 146

Q

-q command line option, 115
quiet directive, 115

R

react word, 104

Record Route (rr), 100
RedHat Linux, 24, 27, 29, 70, 142, 161, 223

reference keyword, 104–105
reference.config, 38–39, 56, 57, 105, 128

reference_net directive, 114
Reserved Bit (RB), 97

Reserved field, TCP packet header, 240
resp keyword, 105–107

rev keyword, 107
RFC 768, 76, 166

RFC 791, 68, 73, 81, 84, 97, 101, 111, 129,
136, 156

RFC 792, 67, 73, 98, 99

RFC 793, 76, 96, 156, 166
RFC 1519, 84

RFC 1700, 88, 102, 129
rpc keyword, 107–108

RPM package, 42, 52, 57, 65fn
testing Snort from, 28–29

.rule, 117–118
Rule actions, 81–83

activate action, 82
alert action, 82
dynamic action, 82
log action, 82
user-defined actions, 82–83

Rule-based intrusion detection, 5

Rule files, 57
Rule headers, 81–83

RULE_PATH variable, 38

Rules:
using variables in, 112–113

using a list of networks in variables,
113

using interface names and variables,
113

using the any keyword, 113
Rules configuration, and snort.conf, 112
rules directory, 31
ruletype keyword, 83
Rusty’s Unreliable Guides, 218–219

S

-s option, 140
SAMBA, 70–71, 73, 143
sameip keyword, 108
Sample default rules, 127–128

checking for incorrect login on Telnet
sessions, 128

checking su attempts from a Telnet ses-
sion, 127–128

SCP utility, 26
Secure Shell (SSH) protocol, 26
Security, 1
Security zones, 10
Securityfocus mailing list archive, 129
SELECT command, 163
Sending alerts:

to SNMP, 69
to Syslog, 69
to Windows, 70–71

Sensor_name parameter, databases used with
Snort, 151

Sensors, 8
seq keyword, 108
Sequence Number field, TCP packet header,

240
Server Message Block (SMB), 16, 70
Server parameter, XML module, 146
serveronly argument, to stream4_reassembly

preprocessor, 137
session keyword, 109

Index 259

set_gid directive, 114
set_uid directive, 115
sid keyword, 110
Signature-based intrusion detection systems,

5
Signatures, 5, 7, 75

attack, 11
defined, 7
updating, 11

Simple Network Management Protocol
(SNMP), 3

Simple Network Modeling Language
(SNML), 146, 156

SLIP, 13
SMB alerts, 28
SMB alerts module, 139
SMTP header, 14
SNML DTD, 245-250
SNMP header, 15
SNMP information, web site, 73
SNMP, sending alerts to, 69
SNMP traps, 16, 23, 83

output module, 154

SNMPv2 trap, general format of, 154
Snoop, 58
Snort, 2, 7, 21

binary files, 56
command line options, 55–56
components of, 12–16

detection engine, 14–16, 155
logging and alerting system, 15
output modules, 15–16
packet decoder, 13
preprocessors, 13–14

configuration file, 112–119
config directives, 114–15
defining new action types, 117
include files, 117–118
output module configuration, 116–

117
preprocessor configuration, 116
rules configuration, 117

sample, 118–119
using variables in rules, 112–113

daemon, 29
downloading, 28
FAQ, 20, 21, 29
file locations, 56–57
getting started with, 23–73
installing, 24–53

multiple Snort sensors with central-
ized database, 26–28

from RPM package, 28–29
single sensor production IDS, 24–25
single sensor with database and Web

interface, 25–26
single sensor with network manage-

ment system integration, 25
from source code, 29–42
test installation, 24

modes, 58–66
alert modes, 66–71
network intrusion detection mode,

65–66
network sniffer mode, 58–65

with no IP address interface, 20–21
and preprocessor/output modules, 131
protocols understood by, 83–84
restarting, 29
rule actions, 81–83

activate action, 82
alert action, 82
dynamic action, 82
log action, 82
pass action, 82
user-defined actions, 82–83

rule headers, 81–83
rule options, 88–111

ack keyword, 89
classtype keyword, 89–93
content keyword, 93–94
content-list keyword, 95
depth keyword, 95
dsize keyword, 95–96
flags keyword, 96–97
flow keyword, 108–109

260 Index

fragbits keyword, 97
icmp_id keyword, 98
icmp_seq keyword, 98
icode keyword, 99–100
id keyword, 100
ipopts keyword, 100–101
ip_proto keyword, 101–102
itype keyword, 98–99
logto keyword, 102–103
msg keyword, 103
nocase keyword, 103
offset keyword, 94
priority keyboard, 103–104
react word, 104
reference keyword, 104–105
resp keyword, 105–107
rev keyword, 107
rpc keyword, 107–108
sameip keyword, 108
seq keyword, 108
session keyword, 109
sid keyword, 110
tag keyword, 110–111
tos keyword, 111
ttl keyword, 111
uricontent keyword, 111

rules, 75–129
actions, 79, 81–83
address, 80, 84–86
automatically updating, 120–125
Classless Inter-Domain Routing (CI-

DR), 78–79, 84
default rules and classes, 125–127
direction, 80–81, 88
extending, 75
first bad rule, 77–78
local.rules file, 127
order based upon action, 119–120
port number, 86–88
ports, 80
protocols, 80, 83–84
rating good rules, 128–129
rule header, 79–81
rule options, 79

sample default rules, 127–128
structure of, 79–81
TCP/IP network layers, 76–77
uses of, 75–76

running in stealth mode, 71–72
running on a non-default interface, 51–52
running on multiple network interfaces,

53
shutting down automatically, 52–53
simplified block diagram for, 132
snort.conf, 56
starting, 29

automatically, 52–53
with database support, 171–172
errors, 43

starting with database support, 171–172
on stealth interface, 20
stopping, 29
summary, 41–42
testing, 43–51
web site, 24, 28, 73

Snort alert modes, 66–71
fast mode, 67–68
full mode, 68
no alert mode, 69
sending alerts to SNMP, 69
sending alerts to Syslog, 69
sending alerts to Windows, 70–71
UNIX socket mode, 68

snort -? command, 82
Snort config directives, 114–15

alertfile, 114
alert_with_interface_name, 114
bpf_file, 114
checksum_mode, 115
chroot, 115
classification, 114
daemon, 114
decode_arp, 114
decode_data_link, 114
dump_chars_only, 114
dump_payload, 114
dump_payload_verbose, 115

Index 261

interface, 114
logdir, 114
nolog, 115
no_promote, 115
obfuscate, 115
order, 114
pkt_count, 115
quiet, 115
reference_net, 114
set_gid, 114
set_uid, 115
stateful, 115
umask, 115
utc, 115
verbose, 115

Snort data:
logging in binary format, 63–65
logging in text format, 63

Snort database:
creating in MySQL, 161–163
creating tables in, 164–170
extra tables, creating, 167–168
maintenance, 175–176

archiving, 175
dropping the database, 176
tools, 175

sample entries in database tables, 168–
170

schema, 176

snort file, 29–30
Snort network intrusion detection mode, 65–

66
Snort network sniffer mode, 58–65

logging Snort data in text format, 63
logging Snort in binary format, 63–65

snort-test-auto.sh, 47–51
snort-test.sh, 44–46
Snort XML parsers, 146
snort_archive, 181–182, 198
snort.conf, 38–40, 54, 56, 57, 76, 118–120,

128, 131, 138–140, 153–154, 212
modifying, 170–171
preprocessor, general format of, 134

snortdb-extra script, 168
/snortlog, 57
snortrules.tar.gz file, 121
SnortSam, 210–212
SnortSnarf, 25, 177, 202–208, 207

defined, 202
main page, 204
running from a cron script, 203

Snot, 156
Source address, 81
Source Address field, IP packet header, 238
Source hardware address field, ARP packet

header, 242
Source port, 81
Source Port field, TCP packet header, 240
Source protocol address field, ARP packet

header, 242
South Florida honeypot project, 10
Splay tree algorithm, 135–136
src directory, 31
stateful directive, 115
stateless option, flow keyword, 109
Statistical Packet Anomaly Detection Engine

(SPADE), 137
Stealth mode, running Snort in, 71–72
stream_only option, flow keyword, 109
Strict Source Routing (ssrr), 101
Stunnel, 159, 174, 176
Supported platforms, 18–19
Switches, 16–18
SYN scan method, 135
Syslog module, 139

alert_syslog output module, 140–142

Syslog, sending alerts to, 69
syslog.conf file, 142

T

tag keyword, 110–111
arguments used with, 110

tar command, 30
tar file, 56

262 Index

Target hardware address field, ARP packet
header, 242

Target protocol address field, ARP packet
header, 242

-t command line option, 115

-T command line option, 55, 114

TCP (*Transmission Control Protocol), 76

TCP connect port scanning, 135

TCP FIN packet, 104

TCP packet header, 240–241

TCP packet, typical output for, 59

TCP stream follow-up, 18

tcpdump, 58, 221–222
defined, 221
log_tcpdump output module, 144–145
using to read Snort-generated files, 64–65

telnet.rules files, 127

$TELNET_SERVERS variable, 127

templates directory, 31

Test alerts:
generating, 44–47

with automatic Snort startup, 47–51

Testing Snort, 43–51
multiple Snort sensors with centralized

database, 26–28
from RPM package, 28–29
single center production IDS, 24–25
single sensor:

with network management system
integration, 25

with the database and Web interface,
25–26

from source code, 29–42
compilation and installation process,

31–37
procedures following installation

processes, 37–42
step-by-step procedure, 56
unpacking, 30–31

test alerts:
generating, 44–47

generating with automatic Snort 47-
51, 24–53

test installation, 24

Time Stamps (ts), 100

timeout argument, stream4module, 136

/tmp directory, 50

/tmp/rules directory, 121, 122

to_client option, flow keyword, 109–110
TOS field, IP packet header, 238

tos keyword, 111

to_server option, flow keyword, 109–110
Total Length field, IP packet header, 238

Transport layer header, and signatures, 7

Trust, levels of, 10

TTL field, IP packet header, 238

ttl keyword, 111

type argument, tag keyword, 110

U

-u command line option, 115

-U command line option, 115

UDP packet header, 241

UDP packets, 111

UDP (User Datagram Protocol), 76, 129

umask directive, 115

Unicode, 13

Unified logging output module, 153–154

Uniform Resource Identifier (URI), 13

UNIX socket mode, 68

UNIX system, 82

UPDATE command, 163

update_files keyword, 125

Upper and lower boundaries, port numbers, 87

Urgent Pointer field, TCP packet header, 241

uricontent keyword, 111

User parameter, databases used with Snort,
151

/usr/lib/mysql directory, 161

utc directive, 115

Index 263

V

V field, IP packet header, 238

/var/log/messages file, 69, 142
/var/log/snort/alert file, 41, 43, 46, 67–68,

105, 202
/var/log/snort directory, 37–38, 42–43, 55,

56–57, 103, 114, 139
/var/log/snort/portscan.log file, 134
/var/log/snort0 and /var/log/snort1, 54

Variable definitions, and snort.conf, 112
-v command line option, 115
verbose directive, 115
Virtual private networks, 1
Vulnerability assessment tools, 1–2

W

Well-known port numbers, 87–88

wget program, 120–121
whois databases, searching, 197

Window field, TCP packet header, 240
Windows (Microsoft), 24–25, 82

sending alerts to, 70–71

Windows, sending alerts to, 70–1
Winpcap, 21
--with-flexresp option, 105–107
--with-mysql command line argument, 160
--with-smbalerts option, 71
workstation.list file, 140, 143–144

X

-X command line option, 115
x11.rules files, 126–127
XML output module, 146–150

examples, 147–150
parameters used with, 146

XML web site, 150

Y

-y command line option, 115

