“svnbook” — 2005/4/14 — 14:55 — page i — #1

Subversion Version Control

% ‘ é perens_series_7x9.25.fm Page 1 Tuesday, March 29, 2005 4:29 PM

t

® ¢ 6 6 O O 6 O O 6 O O o o

L 2

L 2

* ¢ o o

BRUCE PERENS’ OPEN SOURCE SERIES
http://www.phptr.com/perens

Java™ Application Development on Linux®
Carl Albing and Michael Schwarz
C++ GUI Programming with Qt 3
Jasmin Blanchette and Mark Summerfield
Managing Linux Systems with Webmin: System Administration and Module Development
Jamie Cameron
The Linux Book
David Elboth
Understanding the Linux Virtual Memory Manager
Mel Gorman
PHP 5 Power Programming
Andi Gutmans, Stig Bakken, and Derick Rethans
Linux® Quick Fix Notebook
Peter Harrison
Linux Desk Reference, Second Edition
Scott Hawkins
Implementing CIFS: The Common Internet File System
Christopher Hertel
Open Source Security Tools: A Practical Guide to Security Applications
Tony Howlett
Apache Jakarta CommonsReusable Java™ Components
Will Iverson
Embedded Software Development with eCos
Anthony Massa
Rapid Application Development with Moxzilla
Nigel McFarlane
Subversion Version Control: Using the Subversion Version Control System in Development
Projects
William Nagel
Linux Assembly Language Programming
Bob Neveln
Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQlL,
PHP, and ACID
Rafeeq Ur Rehman
Cross-Platform GUI Programming with wxWidgets
Julian Smart and Kevin Hock with Stefan Csomor
Samba-3 by Example: Practical Exercises to Successful Deployment
John H. Terpstra
The Official Samba-3 HOWTO and Reference Guide
John H. Terpstra and Jelmer R. Vernooij, Editors
Real World Linux Security, Second Edition
Bob Toxen

.
e

“svnbook” — 2005/4/14 — 14:55 — page iii — #2

Subversion Version Control

Using The Subversion Version Control System in

Development Projects

William Nagel

N

"L
PTR Prentice Hall Professional Technical Reference

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis « San Francisco
New York ¢ Toronto « Montreal ¢ London ¢ Munich ¢ Paris « Madrid
Capetown « Sydney ¢ Tokyo ¢ Singapore * Mexico City

“svnbook” — 2005/4/14 — 14:55 — page iv — #3

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com
Library of Congress Cataloging-in-Publication Data

Nagel, William A.

Subversion version control : using the Subversion version control system in development projects
/ William Nagel.

p. cm.

Includes index.

ISBN 0-13-185518-2 (pbk. : alk. paper)

1. Computer software—Development. 2. Open source software. 1. Title.

QA76.76.D47N35 2005

005.1-dc22

2005005872
Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or likewise.

For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
One Lake Street

Upper Saddle River, NJ 07458

ISBN 0-13-185518-2
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, May 2005

“svnbook” — 2005/4/14 — 14:55 — page | — #4

To Sara,

and the wonderful life we’ll have together

“svnbook” — 2005/4/14 — 14:55 — page ii — #5

“svnbook” — 2005/4/14 — 14:55 — page vii — #6

Contents

Preface XVii

Acknowledgments XXi

Part| An Introduction to Version Control and Subversion 1

w

Chapter 1 An Introduction to Version Control

1.1 What Is Version Control?

1.2 Why Use It?
1.2.1 Data Integrity
1.2.2 Productivity
1.2.3 Accountability
1.2.4 Software Engineering Process Support
1.2.5 Development Branching
1.2.6 Record Keeping
1.2.7 Distribution of Work
1.2.8 Rapid Development

1.3 The Elements of Version Control
1.3.1 The Repository and Working Directory
1.3.2 Revisions
1.3.3 Logs
1.3.4 Tagging
1.3.5 Branching
1.3.6 Locking versus Merging

1.4 Summary

© 0O NN ~NOO O OO0l BB

e
N B OO

Vi

“svnbook” — 2005/4/14 — 14:55 — page viii — #7

viii Contents

Chapter 2 An Introduction to Subversion 15

2.1 Why Subversion? 15

2.1.1 A Software Engineering Tool 15

2.1.2 Open Source Solutions 16

2.1.3 Major Features of SVN 17

2.2 Limitations of Subversion 21

2.3 Summary 23

Chapter 3 Installing Subversion 25

3.1 Installing on Linux 25

3.1.1 Subversion’s Prerequisites 25

3.1.2 Downloading the Source 27

3.1.3 Compiling and Installing 27

3.2 Installing on Mac OS X 29

3.2.1 Installing OS X Binaries 29

3.2.2 Compiling Subversion on OS X 29

3.2.3 Using Fink 30

3.3 Installing on Windows 30

3.4 Configuring SVN to Use Apache 31

3.4.1 Loading the Modules 31

3.4.2 Setting Up Access 32

3.4.3 Using Apache 2 and Apache 1 Together 33

3.5 Configuring to Use Svnserve 34

3.5.1 Running as a Daemon 34

3.5.2 Running withinetd 35

3.5.3 Tunneling over SSH 36

3.6 Summary 36
Chapter 4 Basic Subversion Usage 37

4.1 Creating the Repository 37

4.2 Getting Files into the Repository 38

4.3 Creating a Working Copy 40

4.4 Editing Files 40

4.5 Committing Changes 42

4.6 Viewing the Logs 42

4.7 Creating a Tag 43

4.8 Creating a Branch 44

“svnbook” — 2005/4/14 — 14:55 — page ix — #8

Contents ix
4.9 Merging a Branch 46
4.10 Handling Conflicts 48
4,11 Summary 51

Part Il Subversion from a Client User’s Perspective 53

Chapter 5 Working with a Working Copy 55
5.1 The Subversion Client 55

5.1.1 Common Command Options 56
5.1.2 Paths 57
5.2 Checking Out and Maintaining a Working Copy 57
5.2.1 Keeping Up-to-Date 59
5.3 Modifying and Committing Data 61
5.3.1 Adding New Files 63
5.3.2 Removing Files 64
5.3.3 Moving Things Around 65
5.4 Getting Information about the Repository 67
5.4.1 Getting Information on the Current State 67
5.4.2 Getting the Repository’s History 72
5.5 Changing the Working Copy Target 76
5.6 Resolving Conflicts 76
5.7 Branching, Tagging, and Merging 78
5.7.1 Creating a Branch or Tag 78
5.7.2 Merging a Branch 80
5.8 Troubleshooting the Working Copy 82
5.9 Summary 83

Chapter 6 Using Properties 85

6.1 Storing Metadata 85
6.1.1 Editing Properties 86
6.1.2 Automatically Setting Properties 86
6.1.3 Committing Properties 87
6.1.4 Storing Revision Properties 87

6.2 Retrieving Metadata 87
6.2.1 Listing Properties 88
6.2.2 Outputting Multiple Binary Properties 89
6.2.3 Getting Revision Properties 89

“svnbook” — 2005/4/14 — 14:55 — page x — #9

X Contents
6.3 Built-in Properties 90
6.3.1 File Properties 90

6.3.2 Revision Properties 95

6.4 Summary 96
Chapter 7 Configuring the Client 97
7.1 Finding the Configuration Files 97
7.2 Editing the Configuration Files 97
7.2.1 Theconfig File 98

7.2.2 Theservers File 101

7.3 Summary 104
Chapter 8 Integrating with Other Tools 105
8.1 Accessing SVN through a GUI Client 105
8.1.1 RapidSVN 105

8.1.2 TortoiseSVN 107

8.1.3 ViewCVS 108

8.1.4 WebSVN 110

8.2 Accessing Directly from an IDE 111
8.2.1 Visual Studio.Net 111

8.2.2 Eclipse 112

8.3 Using Autoversioning with WebDAV 114
8.4 Summary 116
Part Ill Subversion from an Administrator’s Perspective 117
Chapter 9 Organizing Your Repository 119
9.1 Laying Out the Repository 119
9.1.1 The Two Basic Layouts 119

9.1.2 Organizing the Trunk 121

9.1.3 Organizing Branches 122

9.1.4 Organizing Tags 124

9.2 Planning for Growth 126
9.2.1 Merging and Splitting a Repository 127

9.3 Migrating an Existing Repository 129
9.3.1 The Basic Migration Process 130

9.3.2 Migrating from CVS 130

“svnbook” — 2005/4/14 — 14:55 — page xi — #10

Contents Xi
9.3.3 Migrating from SourceSafe 133
9.3.4 Migrating from Other VCSs 134
9.3.5 What If There’s No Migration Tool? 134

9.4 Summary 136
Chapter 10 Administrating the Repository 137
10.1 Controlling Access to the Repository 137
10.1.1 Direct Access Control 138
10.1.2 svnserve Access Control 138
10.1.3 HTTP/HTTPS Access Control 140
10.1.4 Authenticating against a Windows Domain Controller 146

10.2 Backing Up the Repository 149
10.2.1 Hotcopying the Repository 149
10.2.2 Dumping the Repository 150
10.2.3 Automating Your Backups 151
10.2.4 Recovering 153

10.3 Unwedging Your Repository 154
10.4 Upgrading Subversion 156
10.5 Summary 156
Chapter 11 The Joy of Automation 159
11.1 An Introduction to Hooks 160
11.1.1 Available Hook Scripts 160
11.1.2 What a Hook Script Can Do 162
11.1.3 What a Hook Script Can't Do 163
11.1.4 Tips for a Good Hook Script 164
11.1.5 The Pre-made Subversion Scripts 167

11.2 Making the Most of Hook Scripts 167
11.2.1 Automatically Send E-mails 167
11.2.2 Send Notifications via RSS 172
11.2.3 Implement Fine-grain Access Controls 185
11.2.4 Enforce Policy 187
11.2.5 Log Revision Property Changes 188
11.2.6 Make Tags Immutable 189

11.3 Taking Advantage of Metadata 191
11.3.1 The Subversion Commands 191

11.4 The Subversion API 198

“svnbook” — 2005/4/14 — 14:55 — page xii — #11

Contents
11.4.1 svntag 198
11.5 Summary 206
Part IV The Software Development Process 207
Chapter 12 Development Process Policies 209
12.1 Effective Branching and Tagging 209
12.1.1 Branch and Tag Creation and Organization 209
12.1.2 Merging Policies 216
12.2 Checking In Code 217
12.3 Log Data 219
12.3.1 Policies for Informative Logs 220
12.3.2 Parseable Log Messages 221
12.3.3 What Not to Include 222
12.4 Project Builds 223
12.4.1 Configuration 223
12.4.2 Daily Builds 224
12.4.3 Integration 226
12.5 Testing and Quality Assurance 227
12.5.1 The Parts of Testing 227
12.6 Communication 230
12.6.1 Communicating through Subversion 230
12.6.2 Communicating about Subversion 232
12.7 Enforcing Policies 232
12.8 Summary 233
Chapter 13 Integrating SVN with the Development Process 235
13.1 SVN in Different Developers’ Workflows 235
13.1.1 The Methodical Programmer 235
13.1.2 The Collaborator 236
13.1.3 The Lone Hacker 237
13.1.4 The Guru 238
13.1.5 The Rookie 239
13.1.6 The Hobbyist Programmer 239
13.2 Using SVN in Peer Reviews 240
13.2.1 Tracking Peer Review Status 240
13.2.2 Distributing Material for Peer Reviews 242

“svnbook” — 2005/4/14 — 14:55 — page Xxiii — #12

Contents

Xiii

13.2.3 Performing Peer Reviews
13.3 Tying Revisions to Issue Tracking
13.3.1 Issue-tracking Properties

13.3.2 Automating Interaction with Issue Tracking

13.4 Summary

Chapter 14 Case Studies in Development Processes
14.1 Archetypal Studies
14.1.1 Managed Chaos
14.1.2 Rapid Development
14.1.3 Central Planning
14.1.4 Small Teams
14.2 Real-world Studies
14.2.1 KeyGhost Ltd.
14.2.2 Error Free Software
14.2.3 Teledata Communications
14.2.4 GladeSoft
14.2.5 ExCo
14.2.6 Wye Corp
14.2.7 ZedCom

PartV Reference

Chapter 15 Command Reference

15.1 svn
15.1.1 svn
15.1.2 svn
15.1.3 svn
15.1.4 svn
15.1.5 svn
15.1.6 svn
15.1.7 svn
15.1.8 svn
15.1.9 svn
15.1.10svn
15.1.11svn
15.1.12svn

add

blame (praise, annotate, ann)
cat

checkout (co)

cleanup

commit (ci)

copy (cp)

delete (del, remove, rm)
diff (di)

export

help (?, h)

import

244
246
246
247
249

251
251
251
254
256
258
260
260
261
263
265
266
268
270

271

273
273
275
276
277
278
279
279
281
282
284
286
287
287

“svnbook” — 2005/4/14 — 14:55 — page xiv — #13

Xiv Contents
15.1.13svn info 289
15.1.14svn list (1s) 289
15.1.15svn log 291
15.1.16svn merge 292
15.1.17svn mkdir 294
15.1.18svn move (mv, rename, ren) 295
15.1.19svn propdel (pdel, pd) 297
15.1.20svn propedit (pedit, pe) 298
15.1.21svn propget (pget, pg) 299
15.1.22svn proplist (plist, pl) 301
15.1.23svn propset (pset, ps) 302
15.1.24svn resolved 303
15.1.25svn revert 304
15.1.26svn status (stat, st) 305
15.1.27svn switch (sw) 306
15.1.28svn update (up) 307

15.2 svnadmin 308
15.2.1 svnadmin create 309
15.2.2 svnadmin dump 310
15.2.3 svnadmin help (?, h) 310
15.2.4 svnadmin hotcopy 310
15.2.5 svnadmin list-dblogs 311
15.2.6 svnadmin list-unused-dblogs 311
15.2.7 svnadmin load 311
15.2.8 svnadmin lstxns 312
15.2.9 svnadmin recover 312
15.2.10svnadmin rmtxns 313
15.2.11svnadmin setlog 313
15.2.12svnadmin verify 313

15.3 svnlook 314
15.3.1 svnlook author 314
15.3.2 svnlook cat 315
15.3.3 svnlook changed 315
15.3.4 svnlook date 316
15.3.5 svnlook diff 316
15.3.6 svnlook dirs-changed 317

15.3.7 svnlook help (?, h) 317

“svnbook” — 2005/4/14 — 14:55 — page xv — #14

Contents XV
15.3.8 svnlook history 317
15.3.9 svnlook info 318
15.3.10svnlook log 318
15.3.11svnlook propget (pget, pg) 318
15.3.12svnlook proplist (plist, pl) 319
15.3.13svnlook tree 319
15.3.14svnlook uuid 320
15.3.15svnlook youngest 320

15.4 svnversion 320
15.5 svndumpfilter 321
15.5.1 svndumpfilter exclude 322
15.5.2 svndumpfilter include 322
15.5.3 svndumpfilter help (?, h) 323

Index 325

“svnbook” — 2005/4/14 — 14:55 — page xvi — #15

“svnbook” — 2005/4/14 — 14:55 — page xvii — #16

Preface

| was first introduced to version control (and CVS) in college, about the same time | was
introduced to Linux. At that time though, most of the projects | worked on were small
and generally involved only a couple of developers. So, although version control would
have been useful, | never took the time to really use it; my knowledge of CVS remained
limited to what little | needed to know to check out the occasional bleeding-edge project
on Linux (which seemed necessary a little more often in those days). As my college career
progressed, the projects | worked on became more involved, and | began to learn about
“software engineering.” The instruction | received on software engineering never really
covered version control in any depth though, and despite the increased size of the software
projects | was working on, | never delved into using a version control system to keep
track of things. | wanted to; | thought CVS was a neat idea. | just never invested the time
necessary to learn how to set it up and use it. Then came my first major team project.
It was a real-world project, with real-world clients, and its completion was required for
graduation. Finally, | had an excuse to really give version control a try. | presented the case
for CVS to my teammates and (although there was some small resistance) convinced them
that we needed to use it. It was a success. By the end of the project, | was fully sold on the
necessity of version control in any future projects, however big or small. | loved CVS.

After school came the real world, and the love affair with CVS didn't last long. As |
learned (mostly through trial and error) how version control systems should be used, CVS
steadily became more and more inadequate. | could see its potential, but it didn’t measure
up. Code was lost, fits were thrown, and hair was pulled. Still, CVS was the best free, open
source version control system out there, and as an entrepreneur trying to keep a start-up
company going, free was a required feature. Then someone told me about a new version
control project called Subversion, so | went to its site and took a look. It seemed intriguing,
but it wasn’t quite up to the point where | could trust it for my code—and | barely had time
to eat back then, so getting involved in the project’s development was out of the question.
Instead, Subversion went on my back burner and | moved on to other things.

Several months down the road, | saw that Subversion had become self-hosting. “Well,”
| thought, “If they trust it with their own code, maybe it's time to take another look.”
Rolling up my sleeves, | sat down to play around with it. Once again, | had fallen in
love. Subversion was everything CVS could have been. It was stable, it was flexible, and

XVil

“svnbook” — 2005/4/14 — 14:55 — page xviii — #17 QF

XViii Preface

it didn’t eat my code. Thus, after a suitable period of testing, CVS was unceremoniously
chucked and replaced by Subversion. I've never regretted the change. In fact, the only
thing regrettable is the hours of my life wasted fighting with CVS.

Writing the Book

When | was first approached about writing a book on Subversion, my first thought was,
“Why?” There’s already an excellent Subversion manual, written by several of the principle
Subversion authors (who presumably know more about Subversion’s inner workings than |
do), and it's freely available at that. So, | almost turned down the opportunity to write this
book because | couldn’timagine why anyone would want to read it. What could | possibly
add that wasn'’t already written? Then | got to thinking back to my college days, when |
learned version control through trial and error (mostly error). | had the manual to CVS,
but it covered how to use CVS, not how to use version control. It was a good manual, it
just wasn't complete. The Subversion manual is similar; although it is far, far better than
the documentation available for CVS, it's still primarily a technical manual. As a technical
manual, it is excellent. As a guide to realizing Subversion’s full potential in relation to your
software development project, it isn’t complete. Therefore, I've written this book to be the
guide | never had when | was learning how to use version control.

Of course, this book aims to cover the nuts and bolts of Subversion as completely
as possible—you can’t very well use Subversion to develop software if you can’t use
Subversion—but it does so in the context of how to do the things you want to do in day-
to-day software development. The book also goes a step further: It explains how to expand
on the built-in capabilities of Subversion to make the system work for you. In some places,
that takes the form of example scripts or configurations. In others, it is merely ideas that
you can expand to figour software development process. This is not a book to sell a pro-
cess. | do make suggestions here and there of what | think will work in certain situations,
but you don’t need to buy into my “exhalted process” to get the most from this book. In-
stead of showing you how you should develop your software, | show you how Subversion
can make your process easier.

The Layout of the Book

The book is split into five sections, each covering Subversion from a different perspective.

Part I: An Introduction to Version Control and Subversion

This first part looks at Subversion from the beginner’s perspective. It explains what version
control is, why it is useful, and how Subversion fits into the version control world. It shows
you how to install and set up Subversion, and it walks you through Subversion’s essential
features.

Chapter 1 Anintroduction to the essential concepts that make up a version control system.

“svnbook” — 2005/4/14 — 14:55 — page xix — #18 QF

Preface XiX

Chapter 2 An introduction to Subversion’s features and how they compare to some other
common version control systems.

Chapter 3 A basic guide to installing Subversion on Linux, Windows, and Mac OS X.

Chapter 4 A tutorial walkthrough of Subversion, from creating your first repository to
basic branching and merging.

Part Il: Subversion from a Client User’s Perspective

The second part of the book examines Subversion from the perspective of the client user. It
takes a detailed look at using the most important Subversion client commands, as well as
properties, user configuration, and integration with a variety of external tools.

Chapter 5 Walk through a Subversion working copy and the commands used to interact
with it. Most of the common Subversion client commands are covered in this chapter.

Chapter 6 How to use the Subversion tools to work with properties attached to versioned
files.

Chapter 7 A look at Subversion client configuration and customization for an individual
work environment.

Chapter 8 An overview of many of the client tools that Subversion can integrate and in-
teract with.

Part Ill: Subversion from an Administrator’s Perspective

This is a look at Subversion from the admin’s perspective. In this section, | talk about
repository administration and organization. | show how to use automation to help integrate
Subversion into your development process, and | examine the nuts and bolts of such things
as repository security and migration from another version control system.

Chapter 9 Tips on repository organization, as well as how to migrate an old repository to
Subversion with minimal loss of history and metadata.

Chapter 10 Basic repository administration: security, backup, and repository maintenance.

Chapter 11 An in-depth look at automation in Subversion, using hook scripts, metadata,
and the Subversion API. Includes a number of example scripts that you can use in
your project.

Part IV: The Software Development Process

This part takes a look at Subversion from the project manager’s perspective. It looks at the
software development process and how Subversion can fit into a variety of different types
of projects, with many different policies and philosophies.

“svnbook” — 2005/4/14 — 14:55 — page xx — #19 j}

XX Preface

Chapter 12 An overview of different policies adopted by many development projects and
how Subversion can be used to complement those policies.

Chapter 13 An examination of the software development process and how Subversion can
be integrated into that process.

Chapter 14 Case studies that examine both archetypal and real-world projects and their
use of Subversion.

Part V: Reference

The final section is a Subversion command reference. When you need to look up something
quickly, it can be difficult to sift through paragraphs of expositional language. This section
takes the essential technical information from the Subversion commands and makes it easy
to find quickly.

“svnbook” — 2005/4/14 — 14:55 — page xxi — #20

Acknowledgments

I would like to thank everyone who made this book possible. First, my parents for giving me
the support to become the person | am today, and for not dropping me off at an orphanage
(however tempting the option may have been). And the rest of my family and friends—
especially my lovely fiancée, Sara—who never ceased to support me, no matter how many
times | said, “Sorry, | can’t. | have to work on my book.” I'd also like to thank my
coworkers at Stage Logic who never complained when | fled work early or skipped out on
a few days. I'd especially like to thank Ralph Rodkey for helping me to research some of
the Windows-specific aspects of Subversion; Drew Hintz for loaning me his laptop to play
around with Windows myself; and Zach Lute, because | told him | would, even though |
can’'t remember why.

I am grateful to Martin Streicher of Linux Magazine for giving me my first opportunity
as a published writer, and for giving me the opportunity to write the article on Subversion
that ultimately led to this book. | am also grateful to Jill Harry at Prentice Hall for giving
the opportunity to write this book and for supporting me the whole way. Of course, she
couldn’t have done it alone, so I'd also like to thank Brenda Mulligan, John Fuller, Robin
O’Brien, Ebony Haight, Lara Wysong, Kelli Brooks, and the rest of the Prentice Hall team
who have worked very hard to make this book a reality.

This book is not just the work of one mind, either. Without the many who reviewed
and commented on my book along the way, it would be a much lesser book. | would like
to thank Michael Ching, Stuart Robertson, and Gustavo Niemeyer for their reviews of the
book’s concept. I'd also like to thank Michael Ching and Gustavo Niemeyer, as well as Ben
Reser and Chris Pavicich for their invaluable input on the book after it was written. I'm
also grateful to thank Mike Treaster for his commentary on several early chapters from the
perspective of a non-version control expert; to Jason Reese for his commentary from the
perspective of someone who thought version control was a song by Prince; to Jim Markham
for his valuable input on the book’s layout and writing style in the early chapters; and to
Ted Gould for reading those early chapters, even if he never got around to actually telling
me what he thought.

Many thanks also goes out to those people who contributed their real-world experiences
to allow me to prepare the case studies near the end of the book: Mark Grosberg of Glade-
Soft, Felix Collins of KeyGhost, Robert Allan Zeh of Error Free Software, Mark Bohlman

XXi

“svnbook” — 2005/4/14 — 14:55 — page xxii — #21 j}

XXii Acknowledgments

of Teledata Communications, Ron Bieber, Chris Wein, and John Szakmeister. And, of
course, many thanks goes to Stuart Robertson of Absolute Systems for his contributions of
the RSS feed script and Samba/Windows Domain Controller configuration steps.

Without Subversion, this book would not be. So, a sincerely grateful thanks goes out to
everyone who has contributed to Subversion and made it the great version control system
that it is today.

I've tried hard to ensure that everyone who helped me with this book has been thanked.
However, | may have inadvertently left someone out. To that person, | extend an extra
thanks for putting up with my faulty memory.

Finally, thanks goes to K.C. Sanborn, whose continued inability to grasp the concept
of a SCSI bus has helped me keep a proper perspective on the place of computers in the
world.

“svnbook” — 2005/4/14 — 14:55 — page 1 — #22

Part |

An Introduction to
Version Control
and
Subversion

“svnbook” — 2005/4/14 — 14:55 — page 2 — #23

“svnbook” — 2005/4/14 — 14:55 — page 3 — #24 QF

Chapter 1

An Introduction to
Version Control

“Hey, Jane, could you send me a copy of those changes you made last Tuesday?”
“Bob, this function doesn’t work anymore. Did you change something?”

“Sorry, | can’t seem to find those old classes. | guess you'll just have to re-implement
them.”

“Ok, we've all been working hard for the last week. Now let's integrate everyone’s
work together.”

Do any of these comments sound familiar? If you've ever worked on a disorganized
project, they may very well be frighteningly common. They're key indicators of a process
where information is not under control, and in software development, information control
is crucial to a successful project. It is crucial because that's what software development is.
Any nontrivial software project is a complex system, often involving numerous different
developers. For all of those developers to accomplish something, they must know what they
need to accomplish, and that is very difficult to accomplish without controlled distribution
of information between developers.

Organized software development involves a large bag of tools and techniques. At the
core of those tools is the ability to keep the source code—without which, software devel-
opment is simply nothing—maintained and accessible to the people who need that access.
Enter the version control system, which assumes the role of tracking, maintaining, and
storing the revision history of a development project’s source.

Version control is not a simple task, nor are all version control systems created equal.
In the world of open source, the Subversion version control system is rapidly emerging as
a major contender for not only open source development projects, but also small, medium,
and maybe even a few large software companies. For instance, the open source Samba
project has begun using Subversion, as has the Apache Software Foundation. Additionally,
although there are no numbers showing just how many commercial companies are using
Subversion, the Subversion Web site contains numerous testimonials from users who have

“svnbook” — 2005/4/14 — 14:55 — page 4 — #25 j}

4 Chapter 1 An Introduction to Version Control

successfully deployed Subversion in a commercial setting. Also, according to Jason Rob-
bins attigris.org (the site hosting the Subversion project), the version 1.0 release of
Subversion in February of 2004 sparked an enormous increase in downloads of Subversion
(more than 29,000 in May, 2004, for example).

To help you to make the most of this rising star, | will not just show how to use Sub-
version in this book. | will instead show you how to use Subversion effectively as a core
part of your software development process, through examples and explanations of things
you will actually do during real-world, every-day usage of the system, as well as ideas for
integrating Subversion into your total development process.

Before learning how to use Subversion, it is imperative that you have a solid grasp of
the basic concepts of version control. If you have used a version control system extensively
before, you may want to skip to Chapter 2, “An Introduction to Subversion.” If you would
like to learn more about what typical version control systems can do, and how they can
benefit your process, please read on.

1.1 What Is Version Control?

Most major software development projects involve many different developers working con-
currently on a variety of (overlapping) sets of files, over a long period of time. Itis therefore
critical that the changes made by these developers be tracked, so that you can always tell
who is responsible for any changes, as well as what your source files looked like an hour
ago, a week ago, or a year ago. Furthermore, it's just as important (if not even more impor-
tant) to be able to merge the contributions of those many developers into a single whole.
This is where a version control system comes into play.

The basic functionalities of any version control system are to keep track of the changing
states of files over time and merge contributions of multiple developers. They support this,
for the most part, by storing a history of changes made over time by different people. In this
way, it is possible to roll back those changes and see what the files looked like before they
were applied. Additionally, a version control system will provide facilities for merging the
changes, using one or more methods ranging from file locking to automatic integration of
conflicted changes.

1.2 Why Use It?

You know what version control is; why do you need it? Especially for a small team project,
what benefit does a good version control system provide that outweighs the cost of setting
up and learning how to use it? Let’s look at some of the reasons why version control is
critical in any development project, small or large.

1.2.1 Data Integrity

A good version control system helps to protect the integrity of your data. By keeping a
revision history, there is no worry that if code is removed in an edit on one day, it will be
lost when it is determined a week later to have in fact been necessary.

“svnbook” — 2005/4/14 — 14:55 — page 5 — #26 QF

1.2 Why Use It? 5

Having a central project repository can also help with data backup. If developers regu-
larly commit their data to the versioning system, it can be backed up nightly in one chunk
and offloaded to backup storage, with few worries that weeks worth of unfinished data will
be sitting on a developer’s desktop, waiting for the inevitable hard drive failure.

1.2.2 Productivity

By freeing developers from the drudgery of by-hand integration of work, a version control
system can greatly increase productivity. As projects grow larger than one or two people,
even the most well organized of processes will lose countless man hours toward integrating
the work of multiple developers. With a version control system, developers are able to test
changes against the latest work of their peers, identifying and fixing conflicts before they
become unmanageable. They are also able to experiment more easily, free to branch and
modify code without worrying about whether their changes will affect the stability of the
main project or the work of others. If an experimental change breaks something, it can
quickly and easily be rolled back or compared with the original code to see what changed.

A version control system also protects against productivity lost to re-implemented
work, not only by avoiding losses of data that was incorrectly deemed to be unneces-
sary, but also by making each developer’s work readily available to other developers on
the project. If developers are able to easily see where the others working on the project are
going with their work, they will be less likely to duplicate effort. Even in a well-organized
project, it can be easy for two developers working on closely related sections to acciden-
tally implement the same piece of functionality. If all developers regularly commit their
work to a repository, this becomes much less likely to happen.

1.2.3 Accountability

In any development process, it is important to know exactly who added each bit of code
to a project, as well as when they did it, and who has made modifications since then. This
sort of fine-grained accountability is important not only for technical reasons (for example,
who to go to if a section needs to be fixed), but also for purposes of legal defense. In re-
cent times, there have been a number of high profile cases, involving both open source and
closed source projects, that have hinged around allegations of source code being illegiti-
mately placed into other projects. In light of the potential liability that the maintainers of a
project could have in these sorts of cases, having a version control system that makes each
contributer accountable for his own contributions seems to be a prudent precaution to take,
especially if you are maintaining an open source project, where little may be known about
the contributer, and money to fight a legal battle may be tight or nonexistent.

1.2.4 Software Engineering Process Support

Good software (even open source projects) are developed with a software engineering pro-
cess. By software engineering, | mean the application of disciplined development policies
aimed at ensuring that the end product of the process will meet the desired goals in a timely
manner, and with the highest possible standards of quality.

“svnbook” — 2005/4/14 — 14:55 — page 6 — #27

6 Chapter 1 An Introduction to Version Control

A good software engineering process involves a number of different processes and poli-
cies, such as good overall project design, peer review of project components, tracking of
bugs and other issues, and quality assurance testing. None of these are explicitly supported
by most version control systems, but many version control system features (such as hook
scripts and logs) can be an important tool in supporting a project’s software engineering
policies. For example, a version control system (VCS) may be set to automatically e-mail
an issue tracking system in order to report a bug fix, or a system could log peer reviews,
and through the use of hook scripts, disallow any code that hasn’t been peer reviewed to be
merged onto the project’s main source trunk.

1.2.5 Development Branching

As projects progress over time, branches will naturally occur. Old releases will need to be
supported with bug fixes. New projects may be spun off from existing code bases to serve
emerging markets. Whatever the reason, branches will happen, and unless the relationship
between branches is carefully maintained, they will tend to diverge irreconcilably. Issues
that are fixed in one branch will go unfixed in another. Features implemented in a diver-
gent branch will be unusable in the main trunk. In general, keeping even a semblance of
consistency between different branches of development will be a maintenance nightmare.

If used in an organized and consistent manner, the branching features built into most
version control systems can greatly reduce the headaches associated with maintaining di-
vergent branches of development on a project. By using the commit logs generated by the
system, as well as its capability to merge changes from one branch to another, changes that
are applicable to multiple branches can be cleanly implemented on a single branch and then
applied to the other branches. Similarly, a new feature added to a branch can be migrated
to other branches where it may be useful.

1.2.6 Record Keeping

A version control system will help to enforce policies that can ensure a project keeps quality
records for later use. In addition to the aforementioned records of who committed each
change, repository commit logs are invaluable for storing plain-English descriptions not
only of what changes were made in a given commit, but why they were made. In many
cases, commit logs can even be verified against certain patterns, to enforce guidelines for
logs entries that are in place for the project.

In addition to providing a record of what has gone into each commit, logs kept by a
version control system can be used for a variety of applications. For example, they could
be used to create a changelog at a release, or to automatically tie into an issue tracking
system.

1.2.7 Distribution of Work

In our modern Internet age, life is becoming more and more distributed, and nowhere is
this more true than in software development. Open source projects are (almost by defini-
tion) developed in a distributed nature, by developers all over the world, but even in the

“svnbook” — 2005/4/14 — 14:55 — page 7 — #28 QF

1.3 The Elements of Version Control 7

closed source corporate world, distributed development can be a major issue. Regardless
of whether a developer is telecommuting from across town or an outsourcing firm in India,
distributed development can be difficult to deal with.

Version control can make dealing with distributed development easier, by automating
much of the workload of exchanging and merging the work of different developers. As de-
velopers work on their projects from remote corners of the globe, the repository makes the
latest work of their coworkers readily accessible at any time. Combined with good commu-
nication habits, using something like e-mail or instant messaging, distributed development
can become almost as painless as being the next cube over.

1.2.8 Rapid Development

Recent software development methodologies have been moving toward rapid, flexible de-
velopment, with processes like Extreme Programming (XP) and Agile Development being
adopted with increasing frequency. These rapid development methods accentuate policies
of small incremental change and frequent refactoring, which cry out for version control. By
using good version control practices, a project will maintain extremely useful code histo-
ries that delineate the many twists and turns rapidly developed code can take. Additionally,
the central repository of a version control system is perfect for automating the frequent
systems builds called for by an Agile process.

1.3 The Elements of Version Control

So, version control is, in its essence, exactly what its name purports it to be: the tracking,
controlling, and merging of different versions (called revisions) of a project over time. In
practice, as with almost anything, this is not nearly as simple as it sounds. Version control
systems are complex software tools with a wealth of different features that vary widely from
system to system. Conceptually, though, they are in fact fairly simple, and most version
control systems can be grasped with an understanding of a few basic concepts.

1.3.1 The Repository and Working Directory

Most version control systems store versioned projects in a central repository. The reposi-
tory may simply be a structured directory on a server with each versioned file stored sep-
arately, or it may be a database containing entries for the various files in a project. It may
even be a complex distributed system that redundantly stores t